forked from mmperf/mmperf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmperf.py
executable file
·322 lines (277 loc) · 11.7 KB
/
mmperf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python3
import sys
import argparse
import os
import os.path
import platform
import time
import subprocess
import shutil
import re
import collections
import signal
from datetime import datetime
from multiprocessing import Pool
from pathlib import Path
from functools import reduce
import matplotlib.pyplot as plt
import numpy as np
import GPUtil
import csv
plt.style.use('ggplot')
BAR_WIDTH = 0.15
BAR_COLORS = {'mkl': 'cornflowerblue',
'accelerate': 'lightgray',
'mlir': 'sandybrown',
'mlircuda': 'green',
'openblas': 'mediumseagreen',
'blis': 'mediumspringgreen',
'blasfeo': 'olivedrab',
'cublas': 'chocolate',
'halide': 'gold',
'ruy': 'violet',
'tvm': 'indigo',
'tvmcuda': 'darkslateblue',
'naive': 'black',
'nodai': 'red',
'nodai-1': 'dodgerblue',
'nodai-2': 'purple',
'ireevmvx': 'thistle',
'ireedylib': 'aqua',
'ireecuda': 'deeppink',
'ireellvmsandbox': 'wheat'}
BENCHMARK_ENV = os.environ.copy()
BENCHMARK_ENV.update({
"MKL_NUM_THREADS": "1",
"OPENBLAS_NUM_THREADS": "1",
"BLIS_NUM_THREADS": "1",
"HL_NUM_THREADS": "1",
"VECLIB_MAXIMUM_THREADS": "1",
"OMP_NUM_THREADS": "1",
"TVM_NUM_THREADS": "1",
})
def path_expand(s):
return Path(s).expanduser().resolve()
def add_arguments(parser):
parser.add_argument('bins', type=path_expand, help='Path where the test binaries are')
parser.add_argument('results', type=path_expand, help='Result directory')
parser.add_argument('-j', '--jobs', type=int, default=1, help='Number of parallel jobs for running the benchmarks')
def make_result_dir(base_dir):
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S-%f")
result_dir = (base_dir / timestamp).resolve()
os.makedirs(result_dir)
return result_dir
def write_system_info(output_dir, cpuinfo_dir):
pfm = platform.system()
if pfm == "Linux":
# linux
print("Linux System Detected.. looking for /proc/cpuinfo")
shutil.copyfile(Path("/proc/cpuinfo"), output_dir / "cpuinfo")
cpu_pattern = re.compile('cpu[0-9]+')
cpudirs = [x for x in Path("/sys/devices/system/cpu/").iterdir() if cpu_pattern.match(x.name)]
with open(output_dir / 'scaling_governor', 'w') as f:
for cpu in cpudirs:
sc_gov = (cpu / 'cpufreq' / 'scaling_governor')
if sc_gov.is_file():
f.write(cpu.name + ": " + sc_gov.read_text())
else:
f.write(cpu.name + ": not available")
with open(output_dir / 'core_frequencies', 'w') as f:
for cpu in cpudirs:
sc_freq = (cpu / 'cpufreq' / 'scaling_cur_freq')
if sc_freq.is_file():
f.write(cpu.name + ": " + sc_freq.read_text())
else:
f.write(cpu.name + ": not available")
elif pfm == "Darwin":
# OSX
print("OSX System Detected")
else:
print("Unidentified system")
with open(output_dir / 'arch-info', 'w') as fh:
proc = subprocess.run([cpuinfo_dir / "bin" / "cpu-info"],
capture_output=True, text=True, check=True)
fh.write(proc.stdout)
proc = subprocess.run([cpuinfo_dir / "bin" / "isa-info"],
capture_output=True, text=True, check=True)
fh.write(proc.stdout)
proc = subprocess.run([cpuinfo_dir / "bin" / "cache-info"],
capture_output=True, text=True, check=True)
fh.write(proc.stdout)
# Obtain GPU information if available
try:
GPUs = GPUtil.getGPUs()
# TODO: investigate why GPUs gets set to empty list in some cases
if (len(GPUs) > 0):
with open(output_dir / 'gpu-info', 'w') as fg:
gpu_name = GPUs[0].name
fg.write(gpu_name)
except:
pass
def autolabel(rects):
"""
Attach a text label above each bar displaying its height
"""
for rect in rects:
height = rect.get_height()
# If the floor value of GFLOPS is 0 print its float value
if(int(height) == 0):
plt.text(rect.get_x() + rect.get_width()/2., 1.02*height,
'%.3f' % float(height), fontsize=5, ha='center', va='bottom')
else:
plt.text(rect.get_x() + rect.get_width()/2., 1.02*height,
'%d' % int(height), fontsize=5, ha='center', va='bottom')
_result_dir = None
_env = None
def _do_single_permutation(i, path, msize):
try:
cmd = f'{path} --benchmark_format=csv > result_{path.name}.csv'
result = subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL, check=True, cwd=_result_dir)
output = "result_" + path.name + ".csv"
# parse the CPU benchmark results, the elapse time is shown as 'Duration(nsec)'
with open(os.path.join(_result_dir, output), 'r') as csv_file:
csv_reader = csv.reader(csv_file)
runtime = 0
for line in csv_reader:
if (line[0].startswith('BM_Matmul')):
duration = float(line[3])
time_unit = {'ns': 0, 'us': 1, 'ms': 2, 's': 3}
factor = [1e9, 1e6, 1e3, 1]
runtime = duration / factor[time_unit[line[4]]]
mat_size = [float(m) for m in msize.split('x')]
mnk_prod = np.prod(mat_size)
speed = 2.0 * mnk_prod / runtime / 1e9
gflops_path = _result_dir / (path.name + '_perf.out')
with open(gflops_path, 'w') as f:
f.write(str(speed) + " GFLOPS")
f.close()
return i, speed, runtime
except:
return i, False, 0.0
def _gpu_nsys_permutation(i, path, msize, perm_name, warm_up_runs=5):
try:
cmd = f'sudo /usr/local/cuda/bin/nsys profile -t nvtx,cuda -o /tmp/report_{path.name}.qdrep {path}'
subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL, check=True, cwd=_result_dir)
cmd = f'sudo /usr/local/cuda/bin/nsys stats -f csv --report gputrace /tmp/report_{path.name}.qdrep > result_{path.name}.csv'
result = subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL, check=True, cwd=_result_dir)
nsys_output = "result_" + path.name + ".csv"
if perm_name == 'cublas':
name_start = ['volta_sgemm', 'void gemm', 'void gemv']
else:
name_start = ['matmul']
# parse the nsys results, the elapse time is shown as 'Duration(nsec)'
with open(os.path.join(_result_dir, nsys_output), 'r') as csv_file:
csv_reader = csv.reader(csv_file)
duration = 0
cnt = 0
for line in csv_reader:
if len(line) == 0: continue
if line[-1].startswith(tuple(name_start)):
cnt += 1
if cnt > warm_up_runs: # warp up runs are excluded
duration += float(line[1])
runtime = duration / (cnt - warm_up_runs) / 1e9
mat_size = [float(m) for m in msize.split('x')]
mnk_prod = np.prod(mat_size)
speed = 2.0 * mnk_prod / runtime / 1e9
gflops_path = _result_dir / (path.name + '_perf.out')
with open(gflops_path, 'w') as f:
f.write(str(speed) + " GFLOPS")
f.close()
return i, speed, runtime
except:
return i, False, 0.0
def _worker_init(result_dir, env):
global _result_dir, _env, _num_tasks, _done_tasks
print('worker init')
_result_dir = result_dir
_env = env
def do_permutations(jobs, perms, bin_path, result_dir, env, duration=None):
num_tasks = len(perms)
speeds = np.zeros((num_tasks,))
runtimes = np.zeros((num_tasks,))
async_results = [None] * num_tasks
done_tasks = 0
def callback(job_values):
nonlocal done_tasks
index, speed, runtime = job_values
runtimes[index] = runtime
done_tasks += 1
if speed is False:
print(f'{done_tasks}/{num_tasks} done, {perms[index]} took {runtime} and FAILED!')
else:
speeds[index] = speed
print(f'{done_tasks}/{num_tasks} done, {perms[index]} took {runtime} and yields {speed}')
with Pool(jobs, _worker_init, (result_dir, env)) as pool:
for i, perm in enumerate(perms):
perm_name = perm.split('_')[1]
matrix_size = perm.split('_')[2]
if perm_name in ['tvmcuda', 'ireecuda', 'mlircuda', 'cublas']:
async_results[i] = pool.apply_async(_gpu_nsys_permutation, (i, bin_path / perm, matrix_size, perm_name), callback=callback)
else:
async_results[i] = pool.apply_async(_do_single_permutation, (i, bin_path / perm, matrix_size), callback=callback)
print("Submitted all jobs to pool")
for ar in async_results:
ar.get()
pool.close()
pool.join()
return speeds
def main(argv):
parser = argparse.ArgumentParser()
add_arguments(parser)
args = parser.parse_args(argv[1:])
result_dir = make_result_dir(args.results)
write_system_info(result_dir, args.bins.parent / 'cpuinfo-install')
# get only the executables
bin_paths = [x for x in args.bins.iterdir() if
x.is_file() and x.stat().st_mode & 0o111 and x.name.startswith('matmul')]
# run them in parallel and collect the results
speeds = do_permutations(args.jobs, list(x.name for x in bin_paths), args.bins, result_dir, BENCHMARK_ENV)
# break up and interpret the file names
binaries = {}
for i, path in enumerate(bin_paths):
parts = path.name.split('_')[1:]
parts[1] = parts[1].replace('m', '', 1)
size = tuple(int(y) for y in parts[1].split('x'))
binaries.setdefault(parts[0], []).append(
{'path': path.resolve(), 'size': size, 'speed': speeds[i]})
# used to impose a consistent sorting of the matrix sizes in the plot
bar_ordering = list(collections.OrderedDict.fromkeys(y['size'] for x in binaries for y in binaries[x]))
bar_ordering.sort(key=lambda s: (reduce(lambda x, y: x*y, s), s))
any_error = False
for idx, backend in enumerate(binaries):
bar_x = []
speeds = []
for binary in binaries[backend]:
print(backend, binary)
speeds.append(binary['speed'])
bar_x.append(bar_ordering.index(binary['size']) + idx * BAR_WIDTH)
if len(bar_x) > 0:
autolabel(plt.bar(bar_x, speeds, BAR_WIDTH, color=BAR_COLORS[backend], label=backend))
else:
print("No results could be collected for backend", backend)
plt.xlabel("Matrix sizes")
plt.ylabel("GFLOPS")
plt.title("Single Precision Matrix Multiplication")
system_info = ""
f=open(result_dir / 'arch-info')
lines=f.readlines()
system_info = system_info + "CPU:{}: {} (cores x Microarch)".format(lines[1].strip(), lines[3].strip())
f.close()
gpu_info_file = Path(result_dir / 'gpu-info')
if gpu_info_file.exists():
f=open(gpu_info_file)
lines=f.readlines()
system_info = system_info + ", GPU Model:{}".format(lines[0].strip())
f.close()
plt.suptitle(system_info, fontsize=7)
x_pos = [i + 0.5*(len(binaries) - 1)*BAR_WIDTH for i in range(len(bar_ordering))]
plt.xticks(x_pos, ['x'.join(str(d) for d in s) for s in bar_ordering], rotation=90, fontsize=5)
plt.legend(loc='best')
plt.savefig(result_dir / 'matmul.png', dpi=300, bbox_inches='tight')
if any_error:
print("Some benchmarks had problems, see above.")
return 1
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))