-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
257 lines (200 loc) · 9.27 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# import streamlit as st
# import pandas as pd
# import numpy as np
# from sklearn.preprocessing import LabelEncoder
# import joblib
# # Load your trained model
# model = joblib.load('models\model1.pkl')
# # Function to predict sales
# def predict_sales(input_data):
# sales_prediction = model.predict(input_data)
# return sales_prediction
# # Streamlit app
# def main():
# st.title('Sales Prediction App')
# # Input widgets
# PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
# StoreType = st.radio("StoreType", ["a", "b", "c", "d"])
# Assortment = st.radio("Assortment", ["a", "b", "c"])
# StateHoliday = st.radio("State Holiday", ["1", "0"])
# SchoolHoliday = st.radio("School Holiday", ["1", "0"])
# Promo = st.radio("Promo", ["1", "0"])
# Store = st.slider("Store", 1, 1115)
# Customers = st.slider("Customers", 0, 7388)
# CompetitionDistance = st.slider("Competition Distance", 20, 75860)
# CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
# CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
# # PromoInterval StoreType Assortment StateHoliday Store Customers Promo SchoolHoliday CompetitionDistance CompetitionOpenSinceMonth CompetitionOpenSinceYear
# # Store user inputs
# input_data = pd.DataFrame({
# 'PromoInterval': [PromoInterval],
# 'StoreType': [StoreType],
# 'Assortment': [Assortment],
# 'StateHoliday': [StateHoliday],
# 'Store': [Store],
# 'Customers': [Customers],
# 'Promo': [Promo],
# 'SchoolHoliday': [SchoolHoliday],
# 'CompetitionDistance': [CompetitionDistance],
# 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
# 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
# })
# # Display input data
# st.subheader('Input Data:')
# st.write(input_data)
# # Predict sales
# if st.button('Predict Sales'):
# prediction = predict_sales(input_data)
# st.write('Predicted Sales:', prediction)
# if __name__ == '__main__':
# main()
# import streamlit as st
# import pandas as pd
# import numpy as np
# from sklearn.preprocessing import LabelEncoder
# import joblib
# # Load your trained model
# model = joblib.load('models\model1.pkl')
# # Function to predict sales
# def predict_sales(input_data):
# sales_prediction = model.predict(input_data)
# return sales_prediction
# # Function for data analysis
# def perform_analysis(data):
# # Add your analysis code here
# st.subheader("Analysis")
# st.write("Performing analysis...")
# # Function for data overview
# def show_data_overview():
# # Load data from CSV file
# data = pd.read_csv('Dataset/rossmann.csv')
# # Display data overview
# st.subheader("Data Overview")
# st.write(data)
# # Streamlit app
# def main():
# st.title('Sales Prediction App')
# # Sidebar options
# sidebar_option = st.sidebar.radio("Navigation", ["Main", "Analysis", "Data Overview"])
# if sidebar_option == "Main":
# # Input widgets
# PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
# StoreType = st.radio("StoreType", ["a", "b", "c", "d"])
# Assortment = st.radio("Assortment", ["a", "b", "c"])
# # StateHoliday = st.radio("State Holiday", ["1", "0"])
# # -------------------------------------------------------------------------------
# # Define the options and their corresponding labels
# options = ["1", "0"]
# labels = ["Yes", "No"]
# # Create the radio button with labels
# StateHoliday = st.radio("State Holiday", labels)
# # Convert the selected label back to its corresponding option value
# # selected_option = options[labels.index(state_holiday)]
# # -------------------------------------------------------------------------------
# SchoolHoliday = st.radio("School Holiday", ["1", "0"])
# Promo = st.radio("promotion", ["1", "0"])
# Store = st.slider("Store", 1, 1115)
# Customers = st.slider("Customers", 0, 7388)
# CompetitionDistance = st.slider("Competition Distance", 20, 75860)
# CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
# CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
# # Store user inputs
# input_data = pd.DataFrame({
# 'PromoInterval': [PromoInterval],
# 'StoreType': [StoreType],
# 'Assortment': [Assortment],
# 'StateHoliday': [StateHoliday],
# 'Store': [Store],
# 'Customers': [Customers],
# 'Promo': [Promo],
# 'SchoolHoliday': [SchoolHoliday],
# 'CompetitionDistance': [CompetitionDistance],
# 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
# 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
# })
# # Display input data
# st.subheader('Input Data:')
# st.write(input_data)
# # Predict sales
# if st.button('Predict Sales'):
# prediction = predict_sales(input_data)
# st.write('Predicted Sales:', prediction)
# elif sidebar_option == "Analysis":
# perform_analysis(None) # Pass data for analysis if needed
# elif sidebar_option == "Data Overview":
# show_data_overview() # Pass data for overview if needed
# if __name__ == '__main__':
# main()
import streamlit as st
import pandas as pd
import joblib
# Load your trained model
model = joblib.load('models\model2.pkl')
# Function to predict sales
def predict_sales(input_data):
# Make predictions using the loaded model
sales_prediction = model.predict(input_data)
return sales_prediction
# Streamlit app
def main():
st.title('Sales Prediction App')
# Input widgets
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
# -----------------------------------------------------------------------------------------------
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
# Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
StateHoliday = st.radio("State Holiday", ["Yes", "No"])
StateHoliday = 1 if StateHoliday == "Yes" else 0
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
Promo = 1 if Promo == "store is participating" else 0
# ----------------------------------------------------------------------------------------
Store = st.slider("Store", 1, 1115)
Customers = st.slider("Customers", 0, 7388)
CompetitionDistance = st.slider("Competition Distance", 20, 75860)
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
# ----------------------------------------------------------------------------------------
# Store user inputs
input_data = pd.DataFrame({
'PromoInterval': [PromoInterval],
'StoreType': [StoreType],
'Assortment': [Assortment],
'StateHoliday': [StateHoliday],
'Store': [Store],
'Customers': [Customers],
'Promo': [Promo],
'SchoolHoliday': [SchoolHoliday],
'CompetitionDistance': [CompetitionDistance],
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
})
# Display input data
st.subheader('Input Data:')
st.write(input_data)
# Predict sales
# if st.button('Predict Sales'):
# prediction = predict_sales(input_data)
# st.write('Predicted Sales:', prediction)
if st.button('Predict Sales'):
prediction = predict_sales(input_data)[0]
formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
st.write('Predicted Sales:', formatted_prediction)
if __name__ == '__main__':
main()
# Record at index 795018:
# PromoInterval Jan,Apr,Jul,Oct
# StoreType Small Shop
# Assortment basic
# StateHoliday 0
# Store 650
# Customers 636
# Promo 1
# SchoolHoliday 0
# CompetitionDistance 1420
# CompetitionOpenSinceMonth 10
# CompetitionOpenSinceYear 2012
# Sales 6322
# Name: 795018, dtype: object