-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
107 lines (78 loc) · 3.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
Train and evaluate DirSNN and SNN on the synthetic dataset
"""
import torch
from sklearn.model_selection import train_test_split
from model import DirSNNClassifier
from utils import compute_multiclass_accuracy, parse_args, spectral_normalization
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
args = parse_args()
directed = args.directed
directed_dataset = args.directed_dataset
snr = args.snr
spike = args.spike
dset_string = "dirdata" if directed_dataset else "undirdata"
model_string = "dirmodel" if directed else "undirmodel"
data = torch.load(f"data/synth/data_{model_string}_{dset_string}_{snr}.pt")
y = torch.load(f"data/synth/y_{dset_string}_{snr}.pt")
if directed:
(x_1, adj_low_100, adj_low_101, adj_low_110, adj_low_111) = data
adj_low_100 = torch.FloatTensor(spectral_normalization(adj_low_100))
adj_low_101 = torch.FloatTensor(spectral_normalization(adj_low_101))
adj_low_110 = torch.FloatTensor(spectral_normalization(adj_low_110))
adj_low_111 = torch.FloatTensor(spectral_normalization(adj_low_111))
adjs = (adj_low_100, adj_low_101, adj_low_110, adj_low_111)
else: # same model, but different adjacencies
(x_1, adj_1_down) = data
adj_1_down = torch.FloatTensor(spectral_normalization(adj_1_down))
adjs = [adj_1_down]
# Normalize data
scaler = StandardScaler()
x_1 = torch.FloatTensor(scaler.fit_transform(x_1))
x_1_train, x_1_val, y_train, y_val = train_test_split(x_1, y, test_size=0.2, random_state=42, stratify=y)
x_1_val, x_1_test, y_val, y_test = train_test_split(x_1_val, y_val, test_size=0.5, random_state=42, stratify=y_val)
n_classes = 11
n_train = x_1_train.shape[0]
for it in range(args.iterations):
scconv = DirSNNClassifier(edge_channels=1, n_layers=args.n_layers,
n_classes=n_classes, n_hid_conv=args.n_hid_conv, n_hid_mlp=args.n_hid_mlp,
conv_order=args.conv_order, n_adjs=len(adjs), update_func="leaky_relu")
optimizer = torch.optim.Adam(scconv.parameters(), lr=args.lr, weight_decay=0.001)
loss = torch.nn.NLLLoss()
Best_Valid_acc = 0
batchSize = args.batchSize
nTrainBatches = int(np.ceil(n_train / batchSize))
for epoch in range(args.nEpochs):
tot_train_loss = []
tot_train_acc = []
train_perm_idx = torch.randperm(n_train)
for batch in range(nTrainBatches):
thisBatchIndices = torch.LongTensor(train_perm_idx[batch * batchSize : (batch + 1) * batchSize])
x_1_train_batch = x_1_train[thisBatchIndices]
yTrainBatch = y_train[thisBatchIndices]
scconv.zero_grad()
yHatTrain = scconv(x_1_train_batch.unsqueeze(2), adjs)
lossValueTrain = loss(yHatTrain.squeeze(), yTrainBatch)
accTrain = compute_multiclass_accuracy(yHatTrain.squeeze(), yTrainBatch)
pred = yHatTrain.squeeze().argmax(1)
lossValueTrain.backward()
optimizer.step()
tot_train_loss.append(lossValueTrain.detach())
tot_train_acc.append(accTrain)
with torch.no_grad():
yHatVal = scconv(x_1_val.unsqueeze(2), adjs)
lossValueVal = loss(yHatVal.squeeze(), y_val)
accVal = compute_multiclass_accuracy(yHatVal.squeeze(), y_val)
if accVal > Best_Valid_acc:
best_model = deepcopy(scconv)
Best_Valid_acc = accVal
print(f"Epoch {epoch} train loss {lossValueTrain.mean().item()}" +
f" train acc {accTrain.mean().item()} val loss {lossValueVal.detach().item()} val acc {accVal.item()}")
# TEST
yHatTest = best_model(x_1_test.unsqueeze(2), adjs)
lossTest = loss(yHatTest.squeeze(), y_test)
accTest = compute_multiclass_accuracy(yHatTest.squeeze(), y_test)
print(f"Loss test: {lossTest.detach().item()} acc test: {accTest.item()}")