-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gnn.py
107 lines (83 loc) · 3.92 KB
/
train_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Train and evaluate DirGNN and GCN on the synthetic dataset
"""
import torch
from sklearn.model_selection import train_test_split
from utils import compute_multiclass_accuracy, parse_args
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
import numpy as np
from gnns import GNN
args = parse_args()
directed = args.directed
directed_dataset = args.directed_dataset
snr = args.snr
spike = args.spike
dset_string = "dirdata" if directed_dataset else "undirdata"
inc_0_1, adj_0_up, x_1 = torch.load(f"data/synth/inc_{dset_string}_{snr}.pt")
y = torch.load(f"data/synth/y_{dset_string}_{snr}.pt")
if directed_dataset:
if directed:
edge_index = torch.LongTensor(np.stack(adj_0_up.nonzero()))
else:
# Make adj_0_up symmetric -> otherwise it is using random directions
adj_0_up += adj_0_up.T
np.fill_diagonal(adj_0_up, 0)
edge_index = torch.LongTensor(np.stack(adj_0_up.nonzero()))
else:
edge_index = torch.LongTensor(np.stack(adj_0_up.nonzero()))
inc_0_1 = torch.FloatTensor(inc_0_1)
## Generate node signals by projecting edge signals on nodes
x_0 = torch.matmul(inc_0_1, x_1.T).T
# Normalize data
scaler = StandardScaler()
x_0 = torch.FloatTensor(scaler.fit_transform(x_0))
x_0_train, x_0_val, y_train, y_val = train_test_split(x_0, y, test_size=0.2, random_state=42, stratify=y)
x_0_val, x_0_test, y_val, y_test = train_test_split(x_0_val, y_val, test_size=0.5, random_state=42, stratify=y_val)
n_classes = 11
n_train = x_0_train.shape[0]
for it in range(args.iterations):
if directed:
gnn = GNN(num_features=1, num_classes=n_classes, hidden_dim=args.n_hid_conv,
num_layers=args.n_layers, dropout=0, conv_type="dir-gcn", jumping_knowledge=False,
normalize=False, alpha=1 / 2, learn_alpha=True)
else:
gnn = GNN(num_features=1, num_classes=n_classes, hidden_dim=args.n_hid_conv,
num_layers=args.n_layers, dropout=0, conv_type="gcn", jumping_knowledge=False,
normalize=False, alpha=1 / 2, learn_alpha=True)
optimizer = torch.optim.Adam(gnn.parameters(), lr=args.lr, weight_decay=0.001)
loss = torch.nn.NLLLoss()
Best_Valid_acc = 0
batchSize = args.batchSize
nTrainBatches = int(np.ceil(n_train / batchSize))
for epoch in range(args.nEpochs):
tot_train_loss = []
tot_train_acc = []
train_perm_idx = torch.randperm(n_train)
for batch in range(nTrainBatches):
thisBatchIndices = torch.LongTensor(train_perm_idx[batch * batchSize : (batch + 1) * batchSize])
x_0_train_batch = x_0_train[thisBatchIndices]
yTrainBatch = y_train[thisBatchIndices]
gnn.zero_grad()
yHatTrain = gnn(x_0_train_batch.unsqueeze(2), edge_index)
lossValueTrain = loss(yHatTrain.squeeze(), yTrainBatch)
accTrain = compute_multiclass_accuracy(yHatTrain.squeeze(), yTrainBatch)
pred = yHatTrain.squeeze().argmax(1)
lossValueTrain.backward()
optimizer.step()
tot_train_loss.append(lossValueTrain.detach())
tot_train_acc.append(accTrain)
with torch.no_grad():
yHatVal = gnn(x_0_val.unsqueeze(2), edge_index)
lossValueVal = loss(yHatVal.squeeze(), y_val)
accVal = compute_multiclass_accuracy(yHatVal.squeeze(), y_val)
if accVal > Best_Valid_acc:
best_model = deepcopy(gnn)
Best_Valid_acc = accVal
print(f"Epoch {epoch} train loss {lossValueTrain.mean().item()}" +
f" train acc {accTrain.mean().item()} val loss {lossValueVal.detach().item()} val acc {accVal.item()}")
# TEST
yHatTest = best_model(x_0_test.unsqueeze(2), edge_index)
lossTest = loss(yHatTest.squeeze(), y_test)
accTest = compute_multiclass_accuracy(yHatTest.squeeze(), y_test)
print(f"Loss test: {lossTest.detach().item()} acc test: {accTest.item()}")