forked from 98-Sjr/Medical_image_segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
165 lines (136 loc) · 6.22 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import cv2
import torch
import torch.backends.cudnn as cudnn
import yaml
import albumentations
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose
from albumentations.core.composition import Compose, OneOf
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import torchvision.models as models
from archs import archs
from dataset import Dataset
from metrics import iou_score
from utils import AverageMeter
"""
需要指定参数:--name
"""
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', default="vessel_256_DoubleUnet_woDS",
help='model name')
args = parser.parse_args()
return args
def main():
args = parse_args()
with open('models/%s/config.yml' % args.name, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('-'*20)
for key in config.keys():
print('%s: %s' % (key, str(config[key])))
print('-'*20)
cudnn.benchmark = True
# create model
print("=> creating model %s" % config['arch'])
# model = archs.__dict__[config['arch']](3,
# config['input_channels'],
# config['deep_supervision'])
if config['arch'] == 'U_Net':
model = archs.__dict__[config['arch']](config['input_channels'], config['output_channels'])
elif config['arch'] == 'NestedUNet':
model = archs.__dict__[config['arch']](config['output_channels'], config['input_channels'], config['deep_supervision'])
elif config['arch'] == 'R2U_Net' :
model = archs.__dict__[config['arch']](config['input_channels'], config['output_channels'], t=2)
elif config['arch'] == 'AttU_Net' :
model = archs.__dict__[config['arch']](config['input_channels'], config['output_channels'])
elif config['arch'] == 'R2AttU_Net' :
model = archs.__dict__[config['arch']](config['input_channels'], config['output_channels'], t=2)
elif config['arch'] == 'DeepLabV3Plus':
model = archs.__dict__[config['arch']](n_classes=3, n_blocks=[3, 4, 23, 3],
atrous_rates=[6, 12, 18], multi_grids=[1, 2, 4], output_stride=16, )
elif config['arch'] == 'DoubleUnet':
model = archs.__dict__[config['arch']](models.vgg19_bn(), config['input_channels'], config['output_channels'])
else:
raise IndexError
model = model.cuda()
# Data loading code
img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]
_, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41)
model.load_state_dict(torch.load('models/%s/model.pth' % config['name']))
model.eval()
# model.train()
val_transform = Compose([
albumentations.Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
test_img = glob('./test/*')
for name in test_img:
img = cv2.imread(name)
# 数据增强
augmented = val_transform(image=img) # 这个包比较方便,能把mask也一并做掉
img = augmented['image'] # 参考https://github.com/albumentations-team/albumentations
# 开始模型
img = torch.from_numpy(cv2.resize(img, (int(config['input_h']), int(config['input_w']))).astype('float32') / 255, )
img = torch.unsqueeze(img, dim=0).permute(0, 3, 1, 2).repeat(config['batch_size'], 1, 1, 1).cuda()
out = model(img)
out = torch.sigmoid(out)
out = out[0, :, :, :].squeeze().permute(1, 2, 0).detach().cpu().numpy() * 255
cv2.imwrite('./test/out_of_%s_'% config['arch'] + os.path.basename(name), out.astype('uint8'))
val_dataset = Dataset(
img_ids=val_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=val_transform)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
avg_meter = AverageMeter()
for c in range(config['num_classes']):
os.makedirs(os.path.join('outputs', config['name'], str(c)), exist_ok=True)
with torch.no_grad():
for input, target, meta in tqdm(val_loader, total=len(val_loader)):
input = input.cuda()
target = target.cuda()
# compute output
if config['deep_supervision']:
output = model(input)[-1]
else:
output = model(input)
iou = iou_score(output, target)
avg_meter.update(iou, input.size(0))
output = torch.sigmoid(output).cpu().numpy()
for i in range(len(output)):
for c in range(config['num_classes']):
cv2.imwrite(os.path.join('outputs', config['name'], str(c), meta['img_id'][i] + '.jpg'),
(output[i, c] * 255).astype('uint8'))
print('IoU: %.4f' % avg_meter.avg)
plot_examples(input, target, model, num_examples=3)
torch.cuda.empty_cache()
def plot_examples(datax, datay, model,num_examples=6):
fig, ax = plt.subplots(nrows=num_examples, ncols=3, figsize=(18,4*num_examples))
m = datax.shape[0]
for row_num in range(num_examples):
image_indx = np.random.randint(m)
image_arr = model(datax[image_indx:image_indx+1]).squeeze(0).detach().cpu().numpy()
ax[row_num][0].imshow(np.transpose(datax[image_indx].cpu().numpy(), (1,2,0))[:,:,0])
ax[row_num][0].set_title("Orignal Image")
ax[row_num][1].imshow(np.squeeze((image_arr > 0.40)[0,:,:].astype(int)))
ax[row_num][1].set_title("Segmented Image localization")
ax[row_num][2].imshow(np.transpose(datay[image_indx].cpu().numpy(), (1,2,0))[:,:,0])
ax[row_num][2].set_title("Target image")
plt.show()
if __name__ == '__main__':
main()