forked from microsoft/LightGBM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
c_api.cpp
1867 lines (1723 loc) · 67.4 KB
/
c_api.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include <LightGBM/c_api.h>
#include <LightGBM/boosting.h>
#include <LightGBM/config.h>
#include <LightGBM/dataset.h>
#include <LightGBM/dataset_loader.h>
#include <LightGBM/metric.h>
#include <LightGBM/network.h>
#include <LightGBM/objective_function.h>
#include <LightGBM/prediction_early_stop.h>
#include <LightGBM/utils/common.h>
#include <LightGBM/utils/log.h>
#include <LightGBM/utils/openmp_wrapper.h>
#include <LightGBM/utils/random.h>
#include <LightGBM/utils/threading.h>
#include <string>
#include <cstdio>
#include <functional>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <vector>
#include "application/predictor.hpp"
namespace LightGBM {
inline int LGBM_APIHandleException(const std::exception& ex) {
LGBM_SetLastError(ex.what());
return -1;
}
inline int LGBM_APIHandleException(const std::string& ex) {
LGBM_SetLastError(ex.c_str());
return -1;
}
#define API_BEGIN() try {
#define API_END() } \
catch(std::exception& ex) { return LGBM_APIHandleException(ex); } \
catch(std::string& ex) { return LGBM_APIHandleException(ex); } \
catch(...) { return LGBM_APIHandleException("unknown exception"); } \
return 0;
const int PREDICTOR_TYPES = 4;
// Single row predictor to abstract away caching logic
class SingleRowPredictor {
public:
PredictFunction predict_function;
int64_t num_pred_in_one_row;
SingleRowPredictor(int predict_type, Boosting* boosting, const Config& config, int iter) {
bool is_predict_leaf = false;
bool is_raw_score = false;
bool predict_contrib = false;
if (predict_type == C_API_PREDICT_LEAF_INDEX) {
is_predict_leaf = true;
} else if (predict_type == C_API_PREDICT_RAW_SCORE) {
is_raw_score = true;
} else if (predict_type == C_API_PREDICT_CONTRIB) {
predict_contrib = true;
} else {
is_raw_score = false;
}
early_stop_ = config.pred_early_stop;
early_stop_freq_ = config.pred_early_stop_freq;
early_stop_margin_ = config.pred_early_stop_margin;
iter_ = iter;
predictor_.reset(new Predictor(boosting, iter_, is_raw_score, is_predict_leaf, predict_contrib,
early_stop_, early_stop_freq_, early_stop_margin_));
num_pred_in_one_row = boosting->NumPredictOneRow(iter_, is_predict_leaf, predict_contrib);
predict_function = predictor_->GetPredictFunction();
num_total_model_ = boosting->NumberOfTotalModel();
}
~SingleRowPredictor() {}
bool IsPredictorEqual(const Config& config, int iter, Boosting* boosting) {
return early_stop_ != config.pred_early_stop ||
early_stop_freq_ != config.pred_early_stop_freq ||
early_stop_margin_ != config.pred_early_stop_margin ||
iter_ != iter ||
num_total_model_ != boosting->NumberOfTotalModel();
}
private:
std::unique_ptr<Predictor> predictor_;
bool early_stop_;
int early_stop_freq_;
double early_stop_margin_;
int iter_;
int num_total_model_;
};
class Booster {
public:
explicit Booster(const char* filename) {
boosting_.reset(Boosting::CreateBoosting("gbdt", filename));
}
Booster(const Dataset* train_data,
const char* parameters) {
auto param = Config::Str2Map(parameters);
config_.Set(param);
if (config_.num_threads > 0) {
omp_set_num_threads(config_.num_threads);
}
// create boosting
if (config_.input_model.size() > 0) {
Log::Warning("Continued train from model is not supported for c_api,\n"
"please use continued train with input score");
}
boosting_.reset(Boosting::CreateBoosting(config_.boosting, nullptr));
train_data_ = train_data;
CreateObjectiveAndMetrics();
// initialize the boosting
if (config_.tree_learner == std::string("feature")) {
Log::Fatal("Do not support feature parallel in c api");
}
if (Network::num_machines() == 1 && config_.tree_learner != std::string("serial")) {
Log::Warning("Only find one worker, will switch to serial tree learner");
config_.tree_learner = "serial";
}
boosting_->Init(&config_, train_data_, objective_fun_.get(),
Common::ConstPtrInVectorWrapper<Metric>(train_metric_));
}
void MergeFrom(const Booster* other) {
std::lock_guard<std::mutex> lock(mutex_);
boosting_->MergeFrom(other->boosting_.get());
}
~Booster() {
}
void CreateObjectiveAndMetrics() {
// create objective function
objective_fun_.reset(ObjectiveFunction::CreateObjectiveFunction(config_.objective,
config_));
if (objective_fun_ == nullptr) {
Log::Warning("Using self-defined objective function");
}
// initialize the objective function
if (objective_fun_ != nullptr) {
objective_fun_->Init(train_data_->metadata(), train_data_->num_data());
}
// create training metric
train_metric_.clear();
for (auto metric_type : config_.metric) {
auto metric = std::unique_ptr<Metric>(
Metric::CreateMetric(metric_type, config_));
if (metric == nullptr) { continue; }
metric->Init(train_data_->metadata(), train_data_->num_data());
train_metric_.push_back(std::move(metric));
}
train_metric_.shrink_to_fit();
}
void ResetTrainingData(const Dataset* train_data) {
if (train_data != train_data_) {
std::lock_guard<std::mutex> lock(mutex_);
train_data_ = train_data;
CreateObjectiveAndMetrics();
// reset the boosting
boosting_->ResetTrainingData(train_data_,
objective_fun_.get(), Common::ConstPtrInVectorWrapper<Metric>(train_metric_));
}
}
void ResetConfig(const char* parameters) {
std::lock_guard<std::mutex> lock(mutex_);
auto param = Config::Str2Map(parameters);
if (param.count("num_class")) {
Log::Fatal("Cannot change num_class during training");
}
if (param.count("boosting")) {
Log::Fatal("Cannot change boosting during training");
}
if (param.count("metric")) {
Log::Fatal("Cannot change metric during training");
}
config_.Set(param);
if (config_.num_threads > 0) {
omp_set_num_threads(config_.num_threads);
}
if (param.count("objective")) {
// create objective function
objective_fun_.reset(ObjectiveFunction::CreateObjectiveFunction(config_.objective,
config_));
if (objective_fun_ == nullptr) {
Log::Warning("Using self-defined objective function");
}
// initialize the objective function
if (objective_fun_ != nullptr) {
objective_fun_->Init(train_data_->metadata(), train_data_->num_data());
}
boosting_->ResetTrainingData(train_data_,
objective_fun_.get(), Common::ConstPtrInVectorWrapper<Metric>(train_metric_));
}
boosting_->ResetConfig(&config_);
}
void AddValidData(const Dataset* valid_data) {
std::lock_guard<std::mutex> lock(mutex_);
valid_metrics_.emplace_back();
for (auto metric_type : config_.metric) {
auto metric = std::unique_ptr<Metric>(Metric::CreateMetric(metric_type, config_));
if (metric == nullptr) { continue; }
metric->Init(valid_data->metadata(), valid_data->num_data());
valid_metrics_.back().push_back(std::move(metric));
}
valid_metrics_.back().shrink_to_fit();
boosting_->AddValidDataset(valid_data,
Common::ConstPtrInVectorWrapper<Metric>(valid_metrics_.back()));
}
bool TrainOneIter() {
std::lock_guard<std::mutex> lock(mutex_);
return boosting_->TrainOneIter(nullptr, nullptr);
}
void Refit(const int32_t* leaf_preds, int32_t nrow, int32_t ncol) {
std::lock_guard<std::mutex> lock(mutex_);
std::vector<std::vector<int32_t>> v_leaf_preds(nrow, std::vector<int32_t>(ncol, 0));
for (int i = 0; i < nrow; ++i) {
for (int j = 0; j < ncol; ++j) {
v_leaf_preds[i][j] = leaf_preds[i * ncol + j];
}
}
boosting_->RefitTree(v_leaf_preds);
}
bool TrainOneIter(const score_t* gradients, const score_t* hessians) {
std::lock_guard<std::mutex> lock(mutex_);
return boosting_->TrainOneIter(gradients, hessians);
}
void RollbackOneIter() {
std::lock_guard<std::mutex> lock(mutex_);
boosting_->RollbackOneIter();
}
void PredictSingleRow(int num_iteration, int predict_type, int ncol,
std::function<std::vector<std::pair<int, double>>(int row_idx)> get_row_fun,
const Config& config,
double* out_result, int64_t* out_len) {
if (!config.predict_disable_shape_check && ncol != boosting_->MaxFeatureIdx() + 1) {
Log::Fatal("The number of features in data (%d) is not the same as it was in training data (%d).\n"\
"You can set ``predict_disable_shape_check=true`` to discard this error, but please be aware what you are doing.", ncol, boosting_->MaxFeatureIdx() + 1);
}
std::lock_guard<std::mutex> lock(mutex_);
if (single_row_predictor_[predict_type].get() == nullptr ||
!single_row_predictor_[predict_type]->IsPredictorEqual(config, num_iteration, boosting_.get())) {
single_row_predictor_[predict_type].reset(new SingleRowPredictor(predict_type, boosting_.get(),
config, num_iteration));
}
auto one_row = get_row_fun(0);
auto pred_wrt_ptr = out_result;
single_row_predictor_[predict_type]->predict_function(one_row, pred_wrt_ptr);
*out_len = single_row_predictor_[predict_type]->num_pred_in_one_row;
}
void Predict(int num_iteration, int predict_type, int nrow, int ncol,
std::function<std::vector<std::pair<int, double>>(int row_idx)> get_row_fun,
const Config& config,
double* out_result, int64_t* out_len) {
if (!config.predict_disable_shape_check && ncol != boosting_->MaxFeatureIdx() + 1) {
Log::Fatal("The number of features in data (%d) is not the same as it was in training data (%d).\n" \
"You can set ``predict_disable_shape_check=true`` to discard this error, but please be aware what you are doing.", ncol, boosting_->MaxFeatureIdx() + 1);
}
std::lock_guard<std::mutex> lock(mutex_);
bool is_predict_leaf = false;
bool is_raw_score = false;
bool predict_contrib = false;
if (predict_type == C_API_PREDICT_LEAF_INDEX) {
is_predict_leaf = true;
} else if (predict_type == C_API_PREDICT_RAW_SCORE) {
is_raw_score = true;
} else if (predict_type == C_API_PREDICT_CONTRIB) {
predict_contrib = true;
} else {
is_raw_score = false;
}
Predictor predictor(boosting_.get(), num_iteration, is_raw_score, is_predict_leaf, predict_contrib,
config.pred_early_stop, config.pred_early_stop_freq, config.pred_early_stop_margin);
int64_t num_pred_in_one_row = boosting_->NumPredictOneRow(num_iteration, is_predict_leaf, predict_contrib);
auto pred_fun = predictor.GetPredictFunction();
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < nrow; ++i) {
OMP_LOOP_EX_BEGIN();
auto one_row = get_row_fun(i);
auto pred_wrt_ptr = out_result + static_cast<size_t>(num_pred_in_one_row) * i;
pred_fun(one_row, pred_wrt_ptr);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
*out_len = num_pred_in_one_row * nrow;
}
void Predict(int num_iteration, int predict_type, const char* data_filename,
int data_has_header, const Config& config,
const char* result_filename) {
std::lock_guard<std::mutex> lock(mutex_);
bool is_predict_leaf = false;
bool is_raw_score = false;
bool predict_contrib = false;
if (predict_type == C_API_PREDICT_LEAF_INDEX) {
is_predict_leaf = true;
} else if (predict_type == C_API_PREDICT_RAW_SCORE) {
is_raw_score = true;
} else if (predict_type == C_API_PREDICT_CONTRIB) {
predict_contrib = true;
} else {
is_raw_score = false;
}
Predictor predictor(boosting_.get(), num_iteration, is_raw_score, is_predict_leaf, predict_contrib,
config.pred_early_stop, config.pred_early_stop_freq, config.pred_early_stop_margin);
bool bool_data_has_header = data_has_header > 0 ? true : false;
predictor.Predict(data_filename, result_filename, bool_data_has_header, config.predict_disable_shape_check);
}
void GetPredictAt(int data_idx, double* out_result, int64_t* out_len) {
boosting_->GetPredictAt(data_idx, out_result, out_len);
}
void SaveModelToFile(int start_iteration, int num_iteration, const char* filename) {
boosting_->SaveModelToFile(start_iteration, num_iteration, filename);
}
void LoadModelFromString(const char* model_str) {
size_t len = std::strlen(model_str);
boosting_->LoadModelFromString(model_str, len);
}
std::string SaveModelToString(int start_iteration, int num_iteration) {
return boosting_->SaveModelToString(start_iteration, num_iteration);
}
std::string DumpModel(int start_iteration, int num_iteration) {
return boosting_->DumpModel(start_iteration, num_iteration);
}
std::vector<double> FeatureImportance(int num_iteration, int importance_type) {
return boosting_->FeatureImportance(num_iteration, importance_type);
}
double GetLeafValue(int tree_idx, int leaf_idx) const {
return dynamic_cast<GBDTBase*>(boosting_.get())->GetLeafValue(tree_idx, leaf_idx);
}
void SetLeafValue(int tree_idx, int leaf_idx, double val) {
std::lock_guard<std::mutex> lock(mutex_);
dynamic_cast<GBDTBase*>(boosting_.get())->SetLeafValue(tree_idx, leaf_idx, val);
}
void ShuffleModels(int start_iter, int end_iter) {
std::lock_guard<std::mutex> lock(mutex_);
boosting_->ShuffleModels(start_iter, end_iter);
}
int GetEvalCounts() const {
int ret = 0;
for (const auto& metric : train_metric_) {
ret += static_cast<int>(metric->GetName().size());
}
return ret;
}
int GetEvalNames(char** out_strs) const {
int idx = 0;
for (const auto& metric : train_metric_) {
for (const auto& name : metric->GetName()) {
std::memcpy(out_strs[idx], name.c_str(), name.size() + 1);
++idx;
}
}
return idx;
}
int GetFeatureNames(char** out_strs) const {
int idx = 0;
for (const auto& name : boosting_->FeatureNames()) {
std::memcpy(out_strs[idx], name.c_str(), name.size() + 1);
++idx;
}
return idx;
}
const Boosting* GetBoosting() const { return boosting_.get(); }
private:
const Dataset* train_data_;
std::unique_ptr<Boosting> boosting_;
std::unique_ptr<SingleRowPredictor> single_row_predictor_[PREDICTOR_TYPES];
/*! \brief All configs */
Config config_;
/*! \brief Metric for training data */
std::vector<std::unique_ptr<Metric>> train_metric_;
/*! \brief Metrics for validation data */
std::vector<std::vector<std::unique_ptr<Metric>>> valid_metrics_;
/*! \brief Training objective function */
std::unique_ptr<ObjectiveFunction> objective_fun_;
/*! \brief mutex for threading safe call */
std::mutex mutex_;
};
} // namespace LightGBM
using namespace LightGBM;
// some help functions used to convert data
std::function<std::vector<double>(int row_idx)>
RowFunctionFromDenseMatric(const void* data, int num_row, int num_col, int data_type, int is_row_major);
std::function<std::vector<std::pair<int, double>>(int row_idx)>
RowPairFunctionFromDenseMatric(const void* data, int num_row, int num_col, int data_type, int is_row_major);
std::function<std::vector<std::pair<int, double>>(int row_idx)>
RowPairFunctionFromDenseRows(const void** data, int num_col, int data_type);
std::function<std::vector<std::pair<int, double>>(int idx)>
RowFunctionFromCSR(const void* indptr, int indptr_type, const int32_t* indices,
const void* data, int data_type, int64_t nindptr, int64_t nelem);
// Row iterator of on column for CSC matrix
class CSC_RowIterator {
public:
CSC_RowIterator(const void* col_ptr, int col_ptr_type, const int32_t* indices,
const void* data, int data_type, int64_t ncol_ptr, int64_t nelem, int col_idx);
~CSC_RowIterator() {}
// return value at idx, only can access by ascent order
double Get(int idx);
// return next non-zero pair, if index < 0, means no more data
std::pair<int, double> NextNonZero();
private:
int nonzero_idx_ = 0;
int cur_idx_ = -1;
double cur_val_ = 0.0f;
bool is_end_ = false;
std::function<std::pair<int, double>(int idx)> iter_fun_;
};
// start of c_api functions
const char* LGBM_GetLastError() {
return LastErrorMsg();
}
int LGBM_DatasetCreateFromFile(const char* filename,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
API_BEGIN();
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
DatasetLoader loader(config, nullptr, 1, filename);
if (reference == nullptr) {
if (Network::num_machines() == 1) {
*out = loader.LoadFromFile(filename, "");
} else {
*out = loader.LoadFromFile(filename, "", Network::rank(), Network::num_machines());
}
} else {
*out = loader.LoadFromFileAlignWithOtherDataset(filename, "",
reinterpret_cast<const Dataset*>(reference));
}
API_END();
}
int LGBM_DatasetCreateFromSampledColumn(double** sample_data,
int** sample_indices,
int32_t ncol,
const int* num_per_col,
int32_t num_sample_row,
int32_t num_total_row,
const char* parameters,
DatasetHandle* out) {
API_BEGIN();
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
DatasetLoader loader(config, nullptr, 1, nullptr);
*out = loader.CostructFromSampleData(sample_data, sample_indices, ncol, num_per_col,
num_sample_row,
static_cast<data_size_t>(num_total_row));
API_END();
}
int LGBM_DatasetCreateByReference(const DatasetHandle reference,
int64_t num_total_row,
DatasetHandle* out) {
API_BEGIN();
std::unique_ptr<Dataset> ret;
ret.reset(new Dataset(static_cast<data_size_t>(num_total_row)));
ret->CreateValid(reinterpret_cast<const Dataset*>(reference));
*out = ret.release();
API_END();
}
int LGBM_DatasetPushRows(DatasetHandle dataset,
const void* data,
int data_type,
int32_t nrow,
int32_t ncol,
int32_t start_row) {
API_BEGIN();
auto p_dataset = reinterpret_cast<Dataset*>(dataset);
auto get_row_fun = RowFunctionFromDenseMatric(data, nrow, ncol, data_type, 1);
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < nrow; ++i) {
OMP_LOOP_EX_BEGIN();
const int tid = omp_get_thread_num();
auto one_row = get_row_fun(i);
p_dataset->PushOneRow(tid, start_row + i, one_row);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
if (start_row + nrow == p_dataset->num_data()) {
p_dataset->FinishLoad();
}
API_END();
}
int LGBM_DatasetPushRowsByCSR(DatasetHandle dataset,
const void* indptr,
int indptr_type,
const int32_t* indices,
const void* data,
int data_type,
int64_t nindptr,
int64_t nelem,
int64_t,
int64_t start_row) {
API_BEGIN();
auto p_dataset = reinterpret_cast<Dataset*>(dataset);
auto get_row_fun = RowFunctionFromCSR(indptr, indptr_type, indices, data, data_type, nindptr, nelem);
int32_t nrow = static_cast<int32_t>(nindptr - 1);
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < nrow; ++i) {
OMP_LOOP_EX_BEGIN();
const int tid = omp_get_thread_num();
auto one_row = get_row_fun(i);
p_dataset->PushOneRow(tid,
static_cast<data_size_t>(start_row + i), one_row);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
if (start_row + nrow == static_cast<int64_t>(p_dataset->num_data())) {
p_dataset->FinishLoad();
}
API_END();
}
int LGBM_DatasetCreateFromMat(const void* data,
int data_type,
int32_t nrow,
int32_t ncol,
int is_row_major,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
return LGBM_DatasetCreateFromMats(1,
&data,
data_type,
&nrow,
ncol,
is_row_major,
parameters,
reference,
out);
}
int LGBM_DatasetCreateFromMats(int32_t nmat,
const void** data,
int data_type,
int32_t* nrow,
int32_t ncol,
int is_row_major,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
API_BEGIN();
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
std::unique_ptr<Dataset> ret;
int32_t total_nrow = 0;
for (int j = 0; j < nmat; ++j) {
total_nrow += nrow[j];
}
std::vector<std::function<std::vector<double>(int row_idx)>> get_row_fun;
for (int j = 0; j < nmat; ++j) {
get_row_fun.push_back(RowFunctionFromDenseMatric(data[j], nrow[j], ncol, data_type, is_row_major));
}
if (reference == nullptr) {
// sample data first
Random rand(config.data_random_seed);
int sample_cnt = static_cast<int>(total_nrow < config.bin_construct_sample_cnt ? total_nrow : config.bin_construct_sample_cnt);
auto sample_indices = rand.Sample(total_nrow, sample_cnt);
sample_cnt = static_cast<int>(sample_indices.size());
std::vector<std::vector<double>> sample_values(ncol);
std::vector<std::vector<int>> sample_idx(ncol);
int offset = 0;
int j = 0;
for (size_t i = 0; i < sample_indices.size(); ++i) {
auto idx = sample_indices[i];
while ((idx - offset) >= nrow[j]) {
offset += nrow[j];
++j;
}
auto row = get_row_fun[j](static_cast<int>(idx - offset));
for (size_t k = 0; k < row.size(); ++k) {
if (std::fabs(row[k]) > kZeroThreshold || std::isnan(row[k])) {
sample_values[k].emplace_back(row[k]);
sample_idx[k].emplace_back(static_cast<int>(i));
}
}
}
DatasetLoader loader(config, nullptr, 1, nullptr);
ret.reset(loader.CostructFromSampleData(Common::Vector2Ptr<double>(&sample_values).data(),
Common::Vector2Ptr<int>(&sample_idx).data(),
ncol,
Common::VectorSize<double>(sample_values).data(),
sample_cnt, total_nrow));
} else {
ret.reset(new Dataset(total_nrow));
ret->CreateValid(
reinterpret_cast<const Dataset*>(reference));
}
int32_t start_row = 0;
for (int j = 0; j < nmat; ++j) {
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < nrow[j]; ++i) {
OMP_LOOP_EX_BEGIN();
const int tid = omp_get_thread_num();
auto one_row = get_row_fun[j](i);
ret->PushOneRow(tid, start_row + i, one_row);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
start_row += nrow[j];
}
ret->FinishLoad();
*out = ret.release();
API_END();
}
int LGBM_DatasetCreateFromCSR(const void* indptr,
int indptr_type,
const int32_t* indices,
const void* data,
int data_type,
int64_t nindptr,
int64_t nelem,
int64_t num_col,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
API_BEGIN();
if (num_col <= 0) {
Log::Fatal("The number of columns should be greater than zero.");
} else if (num_col >= INT32_MAX) {
Log::Fatal("The number of columns should be smaller than INT32_MAX.");
}
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
std::unique_ptr<Dataset> ret;
auto get_row_fun = RowFunctionFromCSR(indptr, indptr_type, indices, data, data_type, nindptr, nelem);
int32_t nrow = static_cast<int32_t>(nindptr - 1);
if (reference == nullptr) {
// sample data first
Random rand(config.data_random_seed);
int sample_cnt = static_cast<int>(nrow < config.bin_construct_sample_cnt ? nrow : config.bin_construct_sample_cnt);
auto sample_indices = rand.Sample(nrow, sample_cnt);
sample_cnt = static_cast<int>(sample_indices.size());
std::vector<std::vector<double>> sample_values(num_col);
std::vector<std::vector<int>> sample_idx(num_col);
for (size_t i = 0; i < sample_indices.size(); ++i) {
auto idx = sample_indices[i];
auto row = get_row_fun(static_cast<int>(idx));
for (std::pair<int, double>& inner_data : row) {
CHECK(inner_data.first < num_col);
if (std::fabs(inner_data.second) > kZeroThreshold || std::isnan(inner_data.second)) {
sample_values[inner_data.first].emplace_back(inner_data.second);
sample_idx[inner_data.first].emplace_back(static_cast<int>(i));
}
}
}
DatasetLoader loader(config, nullptr, 1, nullptr);
ret.reset(loader.CostructFromSampleData(Common::Vector2Ptr<double>(&sample_values).data(),
Common::Vector2Ptr<int>(&sample_idx).data(),
static_cast<int>(num_col),
Common::VectorSize<double>(sample_values).data(),
sample_cnt, nrow));
} else {
ret.reset(new Dataset(nrow));
ret->CreateValid(
reinterpret_cast<const Dataset*>(reference));
}
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < nindptr - 1; ++i) {
OMP_LOOP_EX_BEGIN();
const int tid = omp_get_thread_num();
auto one_row = get_row_fun(i);
ret->PushOneRow(tid, i, one_row);
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
ret->FinishLoad();
*out = ret.release();
API_END();
}
int LGBM_DatasetCreateFromCSRFunc(void* get_row_funptr,
int num_rows,
int64_t num_col,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
API_BEGIN();
if (num_col <= 0) {
Log::Fatal("The number of columns should be greater than zero.");
} else if (num_col >= INT32_MAX) {
Log::Fatal("The number of columns should be smaller than INT32_MAX.");
}
auto get_row_fun = *static_cast<std::function<void(int idx, std::vector<std::pair<int, double>>&)>*>(get_row_funptr);
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
std::unique_ptr<Dataset> ret;
int32_t nrow = num_rows;
if (reference == nullptr) {
// sample data first
Random rand(config.data_random_seed);
int sample_cnt = static_cast<int>(nrow < config.bin_construct_sample_cnt ? nrow : config.bin_construct_sample_cnt);
auto sample_indices = rand.Sample(nrow, sample_cnt);
sample_cnt = static_cast<int>(sample_indices.size());
std::vector<std::vector<double>> sample_values(num_col);
std::vector<std::vector<int>> sample_idx(num_col);
// local buffer to re-use memory
std::vector<std::pair<int, double>> buffer;
for (size_t i = 0; i < sample_indices.size(); ++i) {
auto idx = sample_indices[i];
get_row_fun(static_cast<int>(idx), buffer);
for (std::pair<int, double>& inner_data : buffer) {
CHECK(inner_data.first < num_col);
if (std::fabs(inner_data.second) > kZeroThreshold || std::isnan(inner_data.second)) {
sample_values[inner_data.first].emplace_back(inner_data.second);
sample_idx[inner_data.first].emplace_back(static_cast<int>(i));
}
}
}
DatasetLoader loader(config, nullptr, 1, nullptr);
ret.reset(loader.CostructFromSampleData(Common::Vector2Ptr<double>(&sample_values).data(),
Common::Vector2Ptr<int>(&sample_idx).data(),
static_cast<int>(num_col),
Common::VectorSize<double>(sample_values).data(),
sample_cnt, nrow));
} else {
ret.reset(new Dataset(nrow));
ret->CreateValid(
reinterpret_cast<const Dataset*>(reference));
}
OMP_INIT_EX();
std::vector<std::pair<int, double>> threadBuffer;
#pragma omp parallel for schedule(static) private(threadBuffer)
for (int i = 0; i < num_rows; ++i) {
OMP_LOOP_EX_BEGIN();
{
const int tid = omp_get_thread_num();
get_row_fun(i, threadBuffer);
ret->PushOneRow(tid, i, threadBuffer);
}
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
ret->FinishLoad();
*out = ret.release();
API_END();
}
int LGBM_DatasetCreateFromCSC(const void* col_ptr,
int col_ptr_type,
const int32_t* indices,
const void* data,
int data_type,
int64_t ncol_ptr,
int64_t nelem,
int64_t num_row,
const char* parameters,
const DatasetHandle reference,
DatasetHandle* out) {
API_BEGIN();
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
std::unique_ptr<Dataset> ret;
int32_t nrow = static_cast<int32_t>(num_row);
if (reference == nullptr) {
// sample data first
Random rand(config.data_random_seed);
int sample_cnt = static_cast<int>(nrow < config.bin_construct_sample_cnt ? nrow : config.bin_construct_sample_cnt);
auto sample_indices = rand.Sample(nrow, sample_cnt);
sample_cnt = static_cast<int>(sample_indices.size());
std::vector<std::vector<double>> sample_values(ncol_ptr - 1);
std::vector<std::vector<int>> sample_idx(ncol_ptr - 1);
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < static_cast<int>(sample_values.size()); ++i) {
OMP_LOOP_EX_BEGIN();
CSC_RowIterator col_it(col_ptr, col_ptr_type, indices, data, data_type, ncol_ptr, nelem, i);
for (int j = 0; j < sample_cnt; j++) {
auto val = col_it.Get(sample_indices[j]);
if (std::fabs(val) > kZeroThreshold || std::isnan(val)) {
sample_values[i].emplace_back(val);
sample_idx[i].emplace_back(j);
}
}
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
DatasetLoader loader(config, nullptr, 1, nullptr);
ret.reset(loader.CostructFromSampleData(Common::Vector2Ptr<double>(&sample_values).data(),
Common::Vector2Ptr<int>(&sample_idx).data(),
static_cast<int>(sample_values.size()),
Common::VectorSize<double>(sample_values).data(),
sample_cnt, nrow));
} else {
ret.reset(new Dataset(nrow));
ret->CreateValid(
reinterpret_cast<const Dataset*>(reference));
}
OMP_INIT_EX();
#pragma omp parallel for schedule(static)
for (int i = 0; i < ncol_ptr - 1; ++i) {
OMP_LOOP_EX_BEGIN();
const int tid = omp_get_thread_num();
int feature_idx = ret->InnerFeatureIndex(i);
if (feature_idx < 0) { continue; }
int group = ret->Feature2Group(feature_idx);
int sub_feature = ret->Feture2SubFeature(feature_idx);
CSC_RowIterator col_it(col_ptr, col_ptr_type, indices, data, data_type, ncol_ptr, nelem, i);
auto bin_mapper = ret->FeatureBinMapper(feature_idx);
if (bin_mapper->GetDefaultBin() == bin_mapper->GetMostFreqBin()) {
int row_idx = 0;
while (row_idx < nrow) {
auto pair = col_it.NextNonZero();
row_idx = pair.first;
// no more data
if (row_idx < 0) { break; }
ret->PushOneData(tid, row_idx, group, sub_feature, pair.second);
}
} else {
for (int row_idx = 0; row_idx < nrow; ++row_idx) {
auto val = col_it.Get(row_idx);
ret->PushOneData(tid, row_idx, group, sub_feature, val);
}
}
OMP_LOOP_EX_END();
}
OMP_THROW_EX();
ret->FinishLoad();
*out = ret.release();
API_END();
}
int LGBM_DatasetGetSubset(
const DatasetHandle handle,
const int32_t* used_row_indices,
int32_t num_used_row_indices,
const char* parameters,
DatasetHandle* out) {
API_BEGIN();
auto param = Config::Str2Map(parameters);
Config config;
config.Set(param);
if (config.num_threads > 0) {
omp_set_num_threads(config.num_threads);
}
auto full_dataset = reinterpret_cast<const Dataset*>(handle);
CHECK(num_used_row_indices > 0);
const int32_t lower = 0;
const int32_t upper = full_dataset->num_data() - 1;
Common::CheckElementsIntervalClosed(used_row_indices, lower, upper, num_used_row_indices, "Used indices of subset");
if (!std::is_sorted(used_row_indices, used_row_indices + num_used_row_indices)) {
Log::Fatal("used_row_indices should be sorted in Subset");
}
auto ret = std::unique_ptr<Dataset>(new Dataset(num_used_row_indices));
ret->CopyFeatureMapperFrom(full_dataset);
ret->CopySubset(full_dataset, used_row_indices, num_used_row_indices, true);
*out = ret.release();
API_END();
}
int LGBM_DatasetSetFeatureNames(
DatasetHandle handle,
const char** feature_names,
int num_feature_names) {
API_BEGIN();
auto dataset = reinterpret_cast<Dataset*>(handle);
std::vector<std::string> feature_names_str;
for (int i = 0; i < num_feature_names; ++i) {
feature_names_str.emplace_back(feature_names[i]);
}
dataset->set_feature_names(feature_names_str);
API_END();
}
int LGBM_DatasetGetFeatureNames(
DatasetHandle handle,
char** feature_names,
int* num_feature_names) {
API_BEGIN();
auto dataset = reinterpret_cast<Dataset*>(handle);
auto inside_feature_name = dataset->feature_names();
*num_feature_names = static_cast<int>(inside_feature_name.size());
for (int i = 0; i < *num_feature_names; ++i) {
std::memcpy(feature_names[i], inside_feature_name[i].c_str(), inside_feature_name[i].size() + 1);
}
API_END();
}
#pragma warning(disable : 4702)
int LGBM_DatasetFree(DatasetHandle handle) {
API_BEGIN();
delete reinterpret_cast<Dataset*>(handle);
API_END();
}
int LGBM_DatasetSaveBinary(DatasetHandle handle,
const char* filename) {
API_BEGIN();
auto dataset = reinterpret_cast<Dataset*>(handle);
dataset->SaveBinaryFile(filename);
API_END();
}
int LGBM_DatasetDumpText(DatasetHandle handle,
const char* filename) {
API_BEGIN();
auto dataset = reinterpret_cast<Dataset*>(handle);
dataset->DumpTextFile(filename);
API_END();
}
int LGBM_DatasetSetField(DatasetHandle handle,
const char* field_name,
const void* field_data,
int num_element,
int type) {
API_BEGIN();