-
Notifications
You must be signed in to change notification settings - Fork 0
/
change_log
53 lines (52 loc) · 2.07 KB
/
change_log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
1.10
* New classifier: IB1
* Bug fixed on Backpropagation. It failed trying to serialize the net.
1.9
* New classifier: Naive Bayes
1.8
* Self-Organized maps (SOM) implementation added.
* Bug fixed on genetic algorithms data load
1.7
* New neural network: Hopfield nets added
1.6.1
* Hyperpipes bug fixed
* Data set domains builder returns range for numeric attributes
1.6
* New classifier: Hyperpipes
* New clusterer: Hierarchical Weighted Average Linkage
* New clusterer: Hierarchical Centroid Linkage
* New clusterer: Hierarchical Median Linkage
* New clusterer: Hierarchical Ward's method Linkage
* New clusterer: Diana (Divisive Analysis)
* Example code added: Simple website clusterer
* New simple matching distance function added for discrete attribute vectors
1.5
* ClassifierEvaluator class added: Ideal for experimentation with classifiers
* New classifier: Multilayer Perceptron using Backpropagation neural network
* New clusterer: Hierarchical Single Linkage
* New clusterer: Hierarchical Complete Linkage
* New clusterer: Hierarchical Average Linkage
* Simple Statistics module added
* Simple Proximity functions module added
* New parameter for K-Means based clusterers: Custom centroid function
1.4
* Backpropagation neural networks rebuilt from zero: Faster, leaner code, more parameterizable.
* All algorithms include the Parameterizable module.
1.3
* DataSet class added to wrap data used in classifiers
* All classifiers use the new DataSet class
* All classifiers extend Classifier class
* Clustering algorithm implemented: K Means
* Clustering algorithm implemented: Bisecting K Means
* get_rules method returns generated rules, do not use to_s anymore
1.2
* New module organization
* Added PRISM algorithm implementation
* Added OneR algorithm implementation
* Added ZeroR algorithm implementation
* Example list added to the forrest documentation
* Backpropagation networks: Checking output dimensions during training
1.1
* Backpropagation networks: Train method returns net error.
1.0
* Initial release