forked from ReaLLMASIC/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
682 lines (565 loc) · 30 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
import inspect
import sys
import re
from rich import print
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
# Config
from gpt_conf import GPTConfig
# Checkpointing
import torch.utils.checkpoint as checkpoint
# Variations
from variations.attention_variations import attention_dictionary
from variations.mlp_variations import get_mlp_instance
from variations.moe_variations import MoELayer
from variations.lsv_variations import lsv_dictionary
from variations.softmax_variations import softmax_dictionary
from variations.norm_variations import norm_dictionary
from variations.position_encoding_variations import QuantizedEmbedding, RotaryEmbedding, SymmetricalOverlapAngularPositions, FIRE
from variations.activation_variations import activation_dictionary
from variations.linear_variations import linear_dictionary
from variations.router_variations import router_dictionary
from quantization.quantize import quantize_dictionary, dequantize, fake_quantize_act
from quantization.quant_utils import set_variant, create_activation_buffers
def create_shared_param_group(layer_type, config):
"""
Creates a shared list of layer blocks (either MLP or Attn), optionally reusing blocks
every 'shared_size' layers, and optionally reflecting them symmetrically if
'shared_sym' is True. Also can handle multiple attention variants in one model.
Args:
layer_type (str): "mlp" or "attn"
config: a config object containing fields like:
- n_layer (int): number of layers total
- use_moe (bool): if True, some MLP layers replaced by MoE
- moe_layer_freq (int): frequency of MoE layers
- shared_mlp_size, shared_attn_size (int)
- shared_mlp_sym, shared_attn_sym (bool)
- shared_fire_embeddings (bool)
- attention_variants (list of str): e.g. ["causal", "fancy"] ...
if you want multiple attention types
- n_head, ...
Returns:
list of layer_blocks
"""
# If you use FIRE for position embeddings in the attention layer:
from variations.position_encoding_variations import FIRE
# Determine if we are building MLP or attn blocks
if layer_type == "mlp":
shared_size = config.shared_mlp_size
shared_sym = config.shared_mlp_sym
elif layer_type == "attn":
shared_size = config.shared_attn_size
shared_sym = config.shared_attn_sym
else:
sys.exit(f"{layer_type} not supported, exiting")
# If attn layer, optionally build a single FIRE module to share
fire_pos_enc = None
if layer_type == "attn" and config.shared_fire_embeddings:
fire_pos_enc = FIRE(config, num_heads=config.n_head)
shared_group = []
layer_block = None
for i in range(config.n_layer):
# Create a new layer block every "shared_size"
if i % shared_size == 0:
if layer_type == "mlp":
# Possibly handle MoE
if config.use_moe and i % config.moe_layer_freq == 0:
layer_block = MoELayer(config)
else:
layer_block = get_mlp_instance(config)
elif layer_type == "attn":
attn_cls = attention_dictionary[config.attention_variant]
# Instantiate an attention layer
layer_block = attn_cls(config, fire_pos_enc=fire_pos_enc)
else:
sys.exit(f"{layer_type} not supported, exiting")
# Add this (possibly reused) block to the list
shared_group.append(layer_block)
# If symmetrical sharing is requested
if shared_sym:
# Even number of layers
if config.n_layer % 2 == 0:
# Once we reach halfway-1, we append the blocks in reverse
if i == (config.n_layer // 2 - 1):
for j in range(i + 1):
shared_group.append(shared_group[i - j])
return shared_group
else:
# Odd number of layers
if i == (config.n_layer // 2):
for j in range(i):
shared_group.append(shared_group[i - j])
return shared_group
return shared_group
class Block(nn.Module):
def __init__(self, config, mlp=None, attn=None):
super().__init__()
# Initialize and set attn normalization (e.g. rmsnorm)
norm_variant_attn = norm_dictionary[config.norm_variant_attn]
self.ln_1 = norm_variant_attn(config)
if not config.use_parallel_mlp:
self.ln_2 = norm_variant_attn(config)
self.use_post_ln = config.use_post_ln
self.use_parallel_mlp = config.use_parallel_mlp
self.use_gradient_checkpointing = config.use_gradient_checkpointing
# Allow for sharing attn between blocks
if attn is None:
self.attn = attention_dictionary[config.attention_variant](config)
else:
self.attn = attn
# Allow for sharing mlp between blocks
if mlp is None:
self.mlp = get_mlp_instance(config)
else:
self.mlp = mlp
def forward(self, x, iter_num):
def custom_forward(*inputs):
x = inputs[0]
if self.use_post_ln:
if self.use_parallel_mlp:
x = self.ln_1(x + self.attn(x, iter_num) + self.mlp(x, iter_num))
else:
x = self.ln_1(x + self.attn(x, iter_num))
x = self.ln_2(x + self.mlp(x, iter_num))
else:
if self.use_parallel_mlp:
ln_1 = self.ln_1(x)
x = x + self.attn(ln_1, iter_num) + self.mlp(ln_1, iter_num)
else:
x = x + self.attn(self.ln_1(x), iter_num)
x = x + self.mlp(self.ln_2(x), iter_num)
return x
if self.use_gradient_checkpointing and x.requires_grad:
return checkpoint.checkpoint(custom_forward, x, use_reentrant=False)
else:
return custom_forward(x)
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
# Shared Parameters MLP
shared_mlp_array = create_shared_param_group("mlp", config)
# Shared Parameters Attention
shared_attn_array = create_shared_param_group("attn", config)
# Factorization Parameters
self.n_embd_wte = config.n_embd_wte
self.n_embd_wte_scale_tying = config.n_embd_wte_scale_tying
# Learned Steering Vectors
self.use_lsv = config.use_lsv
self.lsv_index = config.lsv_index
self.lsv_dataset_num = config.lsv_dataset_num
if config.lsv_dataset_num is not None and config.use_lsv:
self.num_datasets = config.lsv_dataset_num
print(config.lsv_variant)
self.lsv_variant = config.lsv_variant
self.lsv_matrix = lsv_dictionary[self.lsv_variant](config)
# Configure wte, with optional quantization and factoring
if config.quantize_wte:
if config.n_embd_wte:
# If factorization is set
word_embd = QuantizedEmbedding(config.vocab_size, config.n_embd_wte, config.quantize_wte_method, config.quantize_wte_bits)
else:
# no factorization
word_embd = QuantizedEmbedding(config.vocab_size, config.n_embd, config.quantize_wte_method, config.quantize_wte_bits)
else:
if config.n_embd_wte:
# If factorization is set
word_embd = nn.Embedding(config.vocab_size, config.n_embd_wte)
else:
# no factorization
word_embd = nn.Embedding(config.vocab_size, config.n_embd)
self.transformer = nn.ModuleDict(dict(
wte = word_embd,
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config, mlp=shared_mlp_array[i], attn=shared_attn_array[i]) for i in range(config.n_layer)]),
ln_f = norm_dictionary[config.norm_variant_output](config),
))
if self.config.use_abs_pos_embeddings:
if config.quantize_wpe:
pos_embd = QuantizedEmbedding(config.block_size, config.n_embd, config.quantize_wpe_method, config.quantize_wpe_bits)
else:
pos_embd = nn.Embedding(config.block_size, config.n_embd)
self.transformer['wpe'] = pos_embd
# Select softmax variant for output layer
self.softmax_variant_output = config.softmax_variant_output
if self.softmax_variant_output != "softmax":
self.softmax_layer_output = softmax_dictionary[config.softmax_variant_output](config)
if config.n_embd_wte:
self.lm_head = nn.Linear(config.n_embd_wte, config.vocab_size, bias=False)
else:
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# with weight tying when using torch.compile() some warnings get generated:
# "UserWarning: functional_call was passed multiple values for tied weights.
# This behavior is deprecated and will be an error in future versions"
# not 100% sure what this is, so far seems to be harmless. TODO investigate
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
# Initialize and possibly import scale_up and scale_down matrices, if factorization is set
if self.n_embd_wte:
# TODO: make this linear set from variant dictionary
# TODO: make this linear quantizable
self.transformer['scale_up'] = nn.Linear(config.n_embd_wte, config.n_embd, bias=False)
self.transformer['scale_down'] = nn.Linear(config.n_embd_wte, config.n_embd, bias=False)
if self.n_embd_wte_scale_tying:
self.transformer.scale_up.weight = self.transformer.scale_down.weight # Weight tying
if config.import_scale_matrices_freeze:
self.transformer.scale_up.weight.requires_grad = False
self.transformer.scale_down.weight.requires_grad = False
# init all weights
self.apply(self._init_weights)
# import wte
if self.config.import_wte_npy:
# Replace wte with values from numpy and retie weights
self.import_wte(self.config.import_wte_npy)
# import scale_matrices
if config.import_scale_matrices_npz:
self.import_scale_matrices(config.import_scale_matrices_npz, config.n_embd_wte_scale_tying)
for pn, p in self.named_parameters():
# apply special scaled init to the residual projections, per GPT-2 paper
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding and self.config.use_abs_pos_embeddings:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def update_block_size(self, new_block_size):
# Function to increase block size dynamically
if new_block_size > self.config.block_size:
self.config.block_size = new_block_size
if self.config.use_abs_pos_embeddings:
if self.config.quantize_wpe:
pos_embd = QuantizedEmbedding(new_block_size, self.config.n_embd, self.config.quantize_wpe_method, self.config.quantize_wpe_bits)
else:
pos_embd = nn.Embedding(new_block_size, self.config.n_embd)
self.transformer.wpe = pos_embd
for block in self.transformer.h:
if hasattr(block.attn, 'bias'):
block.attn.bias = torch.tril(torch.ones(new_block_size, new_block_size)).view(1, 1, new_block_size, new_block_size)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=self.config.linear_mean_init, std=self.config.linear_std_init)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=self.config.embedding_mean_init, std=self.config.embedding_std_init)
def update_num_angles(self, num_angles):
"""Update the number of angles for rotary embeddings in all attention layers."""
device = next(self.parameters()).device
for block in self.transformer.h:
if hasattr(block.attn, 'rotary_emb_q') and hasattr(block.attn, 'rotary_emb_k'):
block.attn.rotary_emb_q.update_num_angles(num_angles, device)
block.attn.rotary_emb_k.update_num_angles(num_angles, device)
def update_rope_length(self, rope_length):
"""Update the number of angles for rotary embeddings in all attention layers."""
for block in self.transformer.h:
if hasattr(block.attn, 'rotary_emb_q') and hasattr(block.attn, 'rotary_emb_k'):
block.attn.rotary_emb_q.update_rope_length(rope_length)
block.attn.rotary_emb_k.update_rope_length(rope_length)
def import_wte(self, file_path):
""" Replace wte with values from numpy and retie weights """
#Load and format weights
initial_embeddings = np.load(self.config.import_wte_npy)
initial_embeddings_tensor = torch.from_numpy(initial_embeddings).float()
# Initialize imported wte
self.transformer.wte = nn.Embedding.from_pretrained(
initial_embeddings_tensor,
freeze=self.config.import_wte_freeze
)
# Redo the Weight tying
self.lm_head.weight = self.transformer.wte.weight
def export_wte(self, file_path):
# TODO: Determine strategy with this and other means of export, possibly
# replacing this with composition of existing means
embedding_table = self.transformer.wte.weight.detach().cpu().numpy()
np.save(file_path, embedding_table)
print(f"Embedding table saved to {file_path}")
def import_scale_matrices(self, file_path, weight_tying=False):
"""Import scale_up and scale_down matrices from a numpy file."""
scale_matrices = np.load(file_path)
scale_up_tensor = torch.from_numpy(scale_matrices['scale_up']).float().T
scale_down_tensor = torch.from_numpy(scale_matrices['scale_down']).float().T
print(scale_up_tensor.size())
print(scale_down_tensor.size())
self.transformer.scale_up.weight.data.copy_(scale_up_tensor)
self.transformer.scale_down.weight.data.copy_(scale_down_tensor)
if weight_tying:
self.transformer.scale_up.weight = self.transformer.scale_down.weight
print(f"Scale matrices loaded from {file_path} with weight tying: {weight_tying}")
def export_scale_matrices(self, file_path):
"""Export scale_up and scale_down matrices to a numpy file."""
scale_up_matrix = self.transformer.scale_up.weight.detach().cpu().numpy()
scale_down_matrix = self.transformer.scale_down.weight.detach().cpu().numpy()
np.savez(file_path, scale_up=scale_up_matrix, scale_down=scale_down_matrix)
print(f"Scale matrices saved to {file_path}")
def forward(self, idx, targets=None, iter_num=None):
device = idx.device
b, t = idx.size()
# assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
x = None
if self.n_embd_wte:
tok_emb = self.transformer.scale_up(tok_emb)
if self.config.use_abs_pos_embeddings:
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
else:
x = self.transformer.drop(tok_emb)
x.requires_grad_(True) # Ensure requires_grad is True
if self.use_lsv and self.config.apply_lsv_at_layer_idx == 0:
x = self.lsv_matrix(x)
layer = 1
for block in self.transformer.h:
# Propagate tokens through layers
if self.config.use_gradient_checkpointing:
x = checkpoint.checkpoint(block, x, iter_num, use_reentrant=self.config.recompute_backward_pass)
else:
x = block(x, iter_num)
# Intercept for Learned Steering Vectors
if self.use_lsv and layer == self.config.apply_lsv_at_layer_idx:
x = self.lsv_matrix(x)
# x = self.apply_learned_vector_to_layer_output(x)
# Intercept for Steering Vectors
if self.config.apply_vector_at_layer_idx is not None and layer == self.config.apply_vector_at_layer_idx:
x = self.apply_vector_to_layer_output(x)
if self.config.obtain_vector_at_layer_idx is not None and layer == self.config.obtain_vector_at_layer_idx:
print(layer, self.config.obtain_vector_at_layer_idx)
x = self.obtain_vector_from_layer_output(x)
layer +=1
x = self.transformer.ln_f(x)
if self.n_embd_wte:
x = F.linear(x, self.transformer.scale_down.weight.t())
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss
def set_lsv_scaling_factor(self, factor):
self.lsv_matrix.update_lsv_scaling_factor(factor)
def set_lsv_mode(self, mode):
self.lsv_matrix.set_mode(mode)
def set_lsv_mixture(self, mixture):
""" Mixture is a list, allowing for mixing steering vectors """
self.lsv_matrix.set_mixture(mixture)
def get_lsv_scaling_factor(self):
return self.lsv_matrix.get_lsv_scaling_factor()
def set_lsv_index(self, index):
self.lsv_matrix.update_lsv_index(index)
def freeze_non_lsv_parameters(self):
"""Freeze all parameters except for lsv_matrix if lsv_focused_training is enabled."""
print("Freezing all parameters except for lsv_matrix")
# Freeze all parameters by setting requires_grad to False
for name, param in self.named_parameters():
if name != "lsv_matrix":
param.requires_grad = False
else:
param.requires_grad = True # Ensure lsv_matrix can still be trained
def apply_learned_vector_to_layer_output(self, x):
"""Conditionally add a vector based on dataset index to the output of a specific layer."""
# Use one-hot vector for the dataset and multiply by the learned parameter matrix
one_hot_vector = torch.zeros(self.lsv_matrix.size(0), device=x.device)
one_hot_vector[self.lsv_index] = 1.0
# Multiply the one-hot vector by the learned parameter matrix
selected_vector = torch.matmul(one_hot_vector, self.lsv_matrix)
x = x + selected_vector
return x
def apply_vector_to_layer_output(self, x):
"""Conditionally add a vector from a file to the output of a specific layer."""
# require this method has the vector file
assert self.config.apply_vector_file is not None
vector = np.load(self.config.apply_vector_file)
vector_tensor = torch.from_numpy(vector).float().to(x.device)
x = x + self.config.apply_vector_scaling_factor * vector_tensor
return x
def obtain_vector_from_layer_output(self, x):
"""Append a vector to an existing .npy file."""
# Convert the tensor back to a numpy array
y = x
y = torch.mean(y, dim=1, keepdim=True)
result_vector = y.detach().cpu().numpy()
# Save the vector to file
np.save(self.config.obtain_vector_file, result_vector)
print(f"Updated avg vector saved to {self.config.obtain_vector_file}")
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
if self.config.use_abs_pos_embeddings:
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
for block in self.transformer.h:
if hasattr(block.attn, 'bias'):
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
@classmethod
def from_pretrained(cls, config, model_type):
# assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print(f"loading weights from pretrained gpt: {model_type}")
# create a from-scratch initialized minGPT model
model = GPT(config)
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
# NOTE: the assert below will fail because we split out the c_attn linears!
# assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for key in sd_keys_hf:
if any(key.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[key].shape[::-1] == sd[key].shape
with torch.no_grad():
sd[key].copy_(sd_hf[key].t())
elif key.endswith('attn.c_attn.weight') or key.endswith('attn.c_attn.bias'):
# split into c_attn_q/k/v
q, k, v = sd_hf[key].t().split(config.n_embd, dim=0)
q_key_str = key.replace("c_attn", "c_attn_q")
k_key_str = key.replace("c_attn", "c_attn_k")
v_key_str = key.replace("c_attn", "c_attn_v")
sd[q_key_str] = q
sd[k_key_str] = k
sd[v_key_str] = v
else:
# vanilla copy over the other parameters
print(key)
if config.n_embd_wte:
if key == "transformer.wte.weight":
continue
if key == "lm_head.weight":
continue
if not config.use_abs_pos_embeddings:
if key == "transformer.wpe.weight":
continue
assert sd_hf[key].shape == sd[key].shape
with torch.no_grad():
print(key)
sd[key].copy_(sd_hf[key])
return model
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = self.get_num_params()
cfg = self.config
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = None
if self.config.softmax_variant_output != 'softmax':
probs = self.softmax_layer_output(logits)
else:
probs = F.softmax(logits, dim=-1)
assert probs != None
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
@torch.no_grad()
def generate_with_stop(self, idx, max_new_tokens, stop_string, decode, temperature=1.0, top_k=None):
"""
Generate tokens and stop on fixed string match, return the state for further input.
"""
generated_text = ""
buffer = ""
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
next_token_text = decode(idx_next[0].tolist())
generated_text += next_token_text
buffer += next_token_text
# Check if the buffer ends with the stop_string
if buffer.endswith(stop_string):
break
return idx, generated_text