forked from mathworks/awesome-matlab-students
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMidnight_Forest_with_Flashlight.m
233 lines (188 loc) · 6.62 KB
/
Midnight_Forest_with_Flashlight.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
animateFrames();
function animateFrames()
animFilename = 'Midnight_Forest_with_Flashlight.gif'; % Output file name
firstFrame = true;
framesPerSecond = 24;
delayTime = 1/framesPerSecond;
% Create the gif
for frame = 1:48
drawframe(frame);
fig = gcf();
fig.Units = 'pixels';
fig.Position(3:4) = [300,300];
im = getframe(fig);
[A,map] = rgb2ind(im.cdata,256);
if firstFrame
firstFrame = false;
imwrite(A,map,animFilename, 'LoopCount', Inf, 'DelayTime', delayTime);
else
imwrite(A,map,animFilename, 'WriteMode', 'append', 'DelayTime', delayTime);
end
end
end
function drawframe(f)
E=5; % Size of one forest environment segment
% FogColor Vibe
FC=[0 0 0];
%FC=[1 1 1];
% Abbreviations
J=@rand;
K=@rescale;
if f==1
set(gcf,'color',FC);
% Random placement of trees. Clump neare middle
n=40;
v1=[K(randn(n,1)) J(n,1) K(J(n,1),.3,.5)]*E-[E/2 0 0];
% Place a navigable path around zero
M=v1(:,1)<=.1;
v1(M,1)=v1(M,1)-.2;
v1(:,3)=v1(:,3)*.2+.2;
% Duplicate so we are in a repeating donut
%vx=[v1;v1+[0 E 0]];
%B=validatecolor(["#A52A2A"
% "#DAA06D"
% "#6E260E"
% "#954535"
% "#7B3F00"
% "#80471c"
% "#814141"
% "#966919"],...
% 'multiple');
%G=validatecolor(["#097969"
% "#228b22"
% "#50C878"
% "#4F7942"
% "#008000"
% "#355E3B"
% "#2AAA8A"
% "#32CD32"],...
% 'multiple');
% How to compress some colors:
%
% % Turn into flints
% U=floor(CLRS*256);
% % Turn that into chars, offset forward by SPACE
% CH=char(U+' ');
%
% % Turn this into decode code
% A="'"+CH+"'";
% disp("([" + join(A,";") + "-' '])/256;");
%
% Compressed version of above:
B=(['ÆJJ';'ûÁ';'F.';'¶eU';'_ ';'¡g<';'¢aa';'·9'-' '])/256;
G=([')';'B¬B';'pé';'ob';' ¡ ';'U~[';'JË«';'RîR']-' ')/256;
for i=1:size(v1,1)
%% Tree Trunks
N=30;
Q=.1; % variation in distance from center
RN=12; % n pts in bounding rings
rv=[.05 .02]; % Radius values
rh=[0 1]; % Radius heights
% Random pts on cylinder
rt=linspace(0,2*pi,RN+1);
rt(end)=[];
T=[J(1,N)*pi*2 rt rt];
h=[K(randn(1,N)) ones(1,RN)*rh(1) ones(1,RN)*rh(2)];
% Adjust the radius based on height
R=interp1(rh,rv,h);
pts=[cos(T).*R
sin(T).*R
h]';
% triangulate the perfect cylinder
tf=convhulln(pts);
% Push points in/out with variance of Q
D=(1-Q+J(1,size(pts,1))*(Q*2))';
tv=pts.*(D.*[1 1 0]+[0 0 1]);
mkP(tf,(tv+v1(i,:).*[1 1 0]).*[1 1 v1(i,3)+.1],i,B,D);
mkP(tf,(tv+v1(i,:).*[1 1 0]).*[1 1 v1(i,3)+.1]+[0 E 0],i,B,D); % identical trunk in next section
%% Tree tops
N=150;
% Alg for random distribution of pts on a sphere.
T=J(1,N)*pi*2;
u=J(1,N)*2-1;
pts=[0 cos(T).*sqrt(1-u.^2)
0 sin(T).*sqrt(1-u.^2)
0 u ]';
% triangulate the perfect sphere
lf=convhulln(pts);
% Push points around to make foliage frumphy
Q=.15;
D=(1-Q+J(1,size(pts,1))*(Q*2))';
lvr=pts.*D;
% Scale down into our world and push up into treetops
ss=v1(i,3)*.15;
llv=lvr.*[.12+ss .12+ss .08+ss]+[0 0 .1];
mkP(lf,llv+v1(i,:),i,G,D);
mkP(lf,llv+v1(i,:)+[0 E 0],i,G,D); % identical tree in next section
%% Lumpy Ground!
N=200;
Q=.2;
% coordinates
T=J(1,N)*2;
R=J(1,N)+.05;
x=cospi(T).*R*E;
y=sinpi(T).*R*E*2+E;
% Triangulate the flat disc so we can draw it
pv=[x' y'];
pf=delaunay(pv);
% Variation
D=(J(1,size(pv,1))*Q)';
mkP(pf,[pv+.5 D],4,G,D);
%% Decorate!
set(gca,'position',[0 0 1 1],'vis','off','proj','p');
view(3);
daspect([1 1 1]);
end
end
%% Navigate!
yp=f/48*E;
cp=[0 yp .3];
ct=cp+[0 10 .1];
campos(cp);
camtarget(ct);
camva(90);
O=findobj('type','patch');
for i=1:numel(O)
gloom(O(i));
end
%% Shorten patch creation
function mkP(f,v,i,C,D)
% f - faces
% v - vertices
% i - thing index
% C - Array of colors to pick from
% D - distance array
% Create our colors based on D
bC=C(mod(i,size(C,1))+1,:);
C2=hsv2rgb(rgb2hsv(bC).*[.1 1 .3]);
q=bC-C2;
fvc=K(D)*q+C2;
% Create patch and stash colors
patch('Faces',f,'vertices',v,'EdgeC','n','FaceC','i',...
'FaceVertexC',fvc,'U',fvc);
end
function gloom(p)
v1=p.Vertices-cp; % Center around camera position.
clr=p.UserData;
% Compute depth from camera, and rescale as 0-1
B1=K(hypot(hypot(v1(:,1),v1(:,2)),v1(:,3)),'InputMin',0,'InputMax',5);
B=B1.^.2;
% Compute how far off each pt is from being directly ahead of camera
% to simulate the cone of a flashlight.
pd=DN([0 0 .3],v1); % Angle from each pt to camera
cd=DN([0 0 .3],[0 1 .1]); % Direction cam is pointing
str=dot(pd,repmat(cd,size(pd,1),1), 2);
% Where STR is near 1, set B to 0 so there is no blending.
a=.95; % size of light cone is 1-a;
r=.5; % Range of the flashlight
B(str>a&B1<r)=max(B(str>a&B1<r)-E/2,.1);
% Treat fog as a semi-transparent white on top of the patch.
% The depth implies the volume of fog you need to see through to get to the vertex.
set(p,'FaceVertexC',FC.*B+clr.*(1-B))
end
function N=DN(p, t)
% Computed the normalized vector representing normal from POS toward TGT
d=t-p;
N=d./vecnorm(d,2,2);
end
end