-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntergalactic Firearm for Human Operated Robotics.cs
1050 lines (882 loc) · 38.2 KB
/
Intergalactic Firearm for Human Operated Robotics.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Decay causing explosion after the source
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = TightDensityAnalysis(particlePositions, particleVelocities, i, numCells, dx);
}
// Method to calculate heat density based on particle positions and velocities
private static double TightDensityAnalysis(double[] particlePositions, double[] particleVelocities, int cellIndex, int numCells, double dx)
{
class AutomaticFirearm
{
public string Model { get; set; }
public int AmmoCapacity { get; set; }
public bool SafetyOn { get; set; }
public bool TriggerPulled { get; set; }
public bool ActuatorEngaged { get; set; }
public string CarbonBasedMaterials { get; set; }
public string CeramicAlloy { get; set; }
public void EngageActuator()
{
// Engage actuator logic
}
public void DisengageActuator()
{
// Disengage actuator logic
}
public void Fire()
{
// Usage:
Motherboard motherboard = new Motherboard();
motherboard.AddUsbPorts(4);
// Fire logic
}
public void RemoveMaterials()
{
// Remove materials logic
Console.WriteLine("Removing materials...");
}
public void DidFire()
{
// Did fire logic
}
class PowerSource
{
public string Type { get; set; }
public int Voltage { get; set; }
public int Current { get; set; }
}
class AutomaticFirearm
{
public string Model { get; set; }
public int AmmoCapacity { get; set; }
public bool SafetyOn { get; set; }
public bool TriggerPulled { get; set; }
public bool ActuatorEngaged { get; set; }
public string CarbonBasedMaterials { get; set; }
public string CeramicAlloy { get; set; }
public List<string> ElectricalWires { get; set; }
public PowerSource PowerSupply { get; set; } // Added PowerSupply property
public void EngageActuator();
public void DisengageActuator();
public void Fire();
public void RemoveMaterials();
public void DidFire();
public void DoNotFire();
}
class Motherboard
{
public string Model { get; set; }
public string Manufacturer { get; set; }
public int UsbPorts { get; set; }
public List<string> ElectricalWires { get; set; }
public PowerSource PowerSupply { get; set; } // Added PowerSupply property
public void AddUsbPorts(int count);
public void ManagePowerSource(PowerSource powerSource); // Added ManagePowerSource method
}
class PlasmaPhysicselectricalEngineering
{
void Main(string[] args);
void AddPlasmaKinematics();
void AddActuatorKinematics();
}
class HardDriveDisk
{
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
public PowerSource PowerSupply { get; set; } // Added PowerSupply property
public void ReadData();
public void WriteData();
public void AddBands();
public void AddRings();
public void RemoveMaterials();
}
class Motherboard
{
public string Model { get; set; }
public string Manufacturer { get; set; }
public int UsbPorts { get; set; }
public List<string> ElectricalWires { get; set; } // Added electrical wires property
public void AddUsbPorts(int count);
}
class PlasmaPhysicselectricalEngineering
{
static void Main(string[] args);
public void AddPlasmaKinematics();
public void AddActuatorKinematics();
}
class HardDriveDisk
{
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
public void ReadData();
public void WriteData();
public void AddBands();
public void AddRings();
public void RemoveMaterials();
}
// Adding 500 electrical wires to the firearm
var firearm = new AutomaticFirearm();
firearm.ElectricalWires = new List<string>();
for (int i = 0; i< 500; i++)
{
firearm.ElectricalWires.Add("Electrical Wire " + (i + 1));
}
// Connecting electrical wires to motherboards
var motherboard = new Motherboard();
motherboard.ElectricalWires = new List<string>();
for (int i = 0; i < firearm.ElectricalWires.Count; i++)
{
motherboard.ElectricalWires.Add(firearm.ElectricalWires[i]);
}
// Adding circuit breaker
var circuitBreaker = new CircuitBreaker();
// Implement the circuit breaker functionality
}
// Add (red, green, blue) input
string[] colors = { "red", "green", "blue" };
double heatDensity = 0.0;
// Calculate heat density based on particle positions and velocities
// Integration using CPU
for (int i = 0; i < particlePositions.Length; i++)
{
double distance = Math.Abs(cellIndex * dx - particlePositions[i]);
double velocity = particleVelocities[i];
// Add 2 motherboards
Motherboard motherboard1 = new Motherboard();
Motherboard motherboard2 = new Motherboard();
// The method bodies, field initializers, and property accessor bodies have been eliminated for brevity.
class PlasmaPhysicselectricalEngineering
{
public string PlasmaPhysics { get; set; }
public void AddPlasmaPhysics(string physics)
{
// Add logic to add plasma physics
}
public void SetPlasmaPhysics(string physics)
{
// Add logic to set plasma physics
}
void Main(string[] args)
{
// Main method implementation
}
void AddActuatorKinematics()
{
// Add actuator kinematics
}
}
class HardDriveDisk
{
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
public void ReadData()
{
// Read data logic
}
public void WriteData()
{
// Write data logic
}
public void AddBands()
{
// Add bands logic
}
public void AddRings()
{
// Add rings logic
}
public void RemoveMaterials()
{
// Remove materials logic
Console.WriteLine("Removing materials...");
}
}
class PlasmaPhysicselectricalEngineering
{
static async void Main(string[] args);
void AddActuatorKinematics(); // Added method for adding actuator kinematics
}
class HardDriveDisk
{
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
void ReadData();
void WriteData();
}
class AutomaticFirearm
{
public string Model { get; set; }
public int AmmoCapacity { get; set; }
public bool SafetyOn { get; set; }
public bool TriggerPulled { get; set; }
public bool ActuatorEngaged { get; set; }
public void EngageActuator()
{
// Code to engage the actuator
}
public void DisengageActuator()
{
// Code to disengage the actuator
}
public void Fire()
{
// Code to fire the firearm
}
public void SlowDeath()
{
// Code for slow death functionality
}
}
// Calculate heat density contribution from the particle
double density = velocity / (4 * Math.PI * distance * distance);
// Add the contribution to the total heat density
heatDensity += density;
// Add automatic firearm logic
if (density > threshold)
{
FireAutomaticFirearm();
}
}
// Method to fire automatic firearm
private static void FireAutomaticFirearm()
{
// Code to fire the automatic firearm
}
then heatDensity;
}
// Decay causing explosion after the source
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate electric field at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate electric field based on charge distribution
electricField[i] = CalculateElectricField(i, numCells, dx, particlePositions, particleCharges);
}
// Calculate electric field based on charge distribution
private static double CalculateElectricField(int cellIndex, int numCells, double dx, double[] particlePositions, double[] particleCharges)
{
double electricField = 0.0;
// Decay causing explosion after the source
// Decay causing explosion after the source
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = TightDensityAnalysis(particlePositions, particleVelocities, i, numCells, dx);
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Method to calculate heat density based on particle positions and velocities
private static double TightDensityAnalysis(double[] particlePositions, double[] particleVelocities, int cellIndex, int numCells, double dx)
{
// Add (red, green, blue) input
string[] colors = { "red", "green", "blue" };
double heatDensity = 0.0;
// Calculate heat density based on particle positions and velocities
// Integration using CPU
for (int i = 0; i < particlePositions.Length; i++)
{
double distance = Math.Abs(cellIndex * dx - particlePositions[i]);
double velocity = particleVelocities[i];
// Calculate heat density contribution from the particle
double density = velocity / (4 * Math.PI * distance * distance);
// Add the contribution to the total heat density
heatDensity += density;
// Add automatic firearm logic
if (density > threshold)
{
FireAutomaticFirearm();
// The method bodies, field initializers, and property accessor bodies have been eliminated for brevity.
class PlasmaPhysicselectricalEngineering
{
static async void Main(string[] args);
}
class HardDriveDisk
{
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
public void ReadData();
public void WriteData();
public void AddBands();
public void AddRings();
}
}
}
// Method to fire automatic firearm
private static void FireAutomaticFirearm()
{
// Code to fire the automatic firearm
}
then heatDensity;
}
// Decay causing explosion after the source
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate electric field at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate electric field based on charge distribution
electricField[i] = CalculateElectricField(i, numCells, dx, particlePositions, particleCharges);
}
// Calculate electric field based on charge distribution
private static double CalculateElectricField(int cellIndex, int numCells, double dx, double[] particlePositions, double[] particleCharges)
{
double electricField = 0.0;
// Calculate electric field due to each particle
for (int i = 0; i < particlePositions.Length; i++)
{
double distance = Math.Abs(cellIndex * dx - particlePositions[i]);
double charge = particleCharges[i];
// Calculate electric field contribution from the particle
double field = charge / (4 * Math.PI * epsilon0 * Math.Pow(distance, 2));
// Add the contribution to the total electric field
electricField += field;
}
then electricField;
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine("Frames Per Second: " + fps);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
for (int i = 0; i < numCells; i++)
{
double distanceFromSource = Math.Abs(i * dx - particlePositions[0]);
electricField[i] *= Math.Exp(-decayRate * distanceFromSource);
}
}
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine("Frames Per Second: " + fps);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
for (int i = 0; i < numCells; i++)
{
double distanceFromSource = Math.Abs(i * dx - particlePositions[0]);
electricField[i] *= Math.Exp(-decayRate * distanceFromSource);
}
}
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Local lifetime
double localLifetime = numTimeSteps * dt;
// Watch global plasma physics
WatchGlobalPlasmaPhysics();
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Local lifetime
double localLifetime = numTimeSteps * dt;
// Watch global plasma physics
WatchGlobalPlasmaPhysics();
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Quantum decay
for (int i = 0; i < numVolts; i++)
{
// Calculate probability of decay
double probability = Math.Exp(-decayRate * dt);
// Check if decay occurs
if (rand.NextDouble() < probability)
{
// Reset particle position and velocity
particlePositions[i] = rand.NextDouble() * numCells * dx;
particleVelocities[i] = 0.0;
}
}
then electricField;
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
for (int i = 0; i < numCells; i++)
{
double distanceFromSource = Math.Abs(i * dx - particlePositions[0]);
electricField[i] *= Math.Exp(-decayRate * distanceFromSource);
}
}
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Local lifetime
double localLifetime = numTimeSteps * dt;
// Watch global plasma physics
WatchGlobalPlasmaPhysics();
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Redundant physics
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate electric field at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate electric field based on charge distribution
electricField[i] = CalculateElectricField(i, numCells, dx, particlePositions, particleCharges);
}
// Calculate electric field based on charge distribution
private static double CalculateElectricField(int cellIndex, int numCells, double dx, double[] particlePositions, double[] particleCharges)
{
double electricField = 0.0;
// Calculate electric field due to each particle
for (int i = 0; i < particlePositions.Length; i++)
{
double distance = Math.Abs(cellIndex * dx - particlePositions[i]);
double charge = particleCharges[i];
// Calculate electric field contribution from the particle
double field = charge / (4 * Math.PI * epsilon0 * Math.Pow(distance, 2));
// Add the contribution to the total electric field
electricField += field;
}
then electricField;
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
for (int i = 0; i < numCells; i++)
{
double distanceFromSource = Math.Abs(i * dx - particlePositions[0]);
electricField[i] *= Math.Exp(-decayRate * distanceFromSource);
}
}
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
// Decay causing explosion after the source
for (int t = 0; t < numTimeSteps; t++)
{
// Calculate electric field at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate electric field based on charge distribution
electricField[i] = CalculateElectricField(i, numCells, dx, particlePositions, particleCharges);
}
// Calculate electric field based on charge distribution
private static double CalculateElectricField(int cellIndex, int numCells, double dx, double[] particlePositions, double[] particleCharges)
{
double electricField = 0.0;
// Calculate electric field due to each particle
for (int i = 0; i < particlePositions.Length; i++)
{
double distance = Math.Abs(cellIndex * dx - particlePositions[i]);
double charge = particleCharges[i];
// Calculate electric field contribution from the particle
double field = charge / (4 * Math.PI * epsilon0 * Math.Pow(distance, 2));
// Add the contribution to the total electric field
// Constants
double chargeElectron = -1.602e-19; // Electron charge in coulombs
double massElectron = 9.109e-31; // Electron mass in kg
double chargeIon = 1.602e-19; // Ion charge in coulombs
double massIon = 1.67e-27; // Ion mass in kg
double epsilon0 = 8.854e-12; // Permittivity of free space in F/m
double dt = 1e-10; // Time step in seconds
double dx = 1e-4; // Spatial step in meters
double errorAnalysisConstant = 1e-6; // Error analysis constant
// Rest of the code...
electricField += field;
}
then electricField;
}
// Update particle positions and velocities
for (int i = 0; i < numVolts; i++)
{
// Interpolate electric field at particle position
int cellIndex = (int)(particlePositions[i] / dx);
double interpolatedElectricField = electricField[cellIndex] +
(electricField[cellIndex + 1] - electricField[cellIndex]) *
((particlePositions[i] / dx) - cellIndex);
// Update velocity using Newton's second law
double acceleration = particleCharges[i] * interpolatedElectricField / particleMasses[i];
particleVelocities[i] += acceleration * dt;
// Update position using velocity
particlePositions[i] += particleVelocities[i] * dt;
// Particle-wall collisions (simple reflection)
if (particlePositions[i] < 0 || particlePositions[i] > numCells * dx)
{
particleVelocities[i] *= -1; // Reverse velocity
}
}
// Calculate heat density at each cell
for (int i = 0; i < numCells; i++)
{
// TODO: Calculate heat density based on particle positions and velocities
heatDensity[i] = 0.0; // Placeholder, replace with actual calculation
}
// Output some diagnostics
if (t % 100 == 0)
{
Console.WriteLine("Time Step: " + t);
Console.WriteLine("Particle Position: " + particlePositions[0]);
Console.WriteLine("Particle Velocity: " + particleVelocities[0]);
Console.WriteLine("Heat Density: " + heatDensity[0]);
Console.WriteLine();
}
// Decay causing explosion after the source
if (t > 15)
{
// Add exponential decay from source
double decayRate = 0.1; // Decay rate constant
for (int i = 0; i < numCells; i++)
{
double distanceFromSource = Math.Abs(i * dx - particlePositions[0]);
electricField[i] *= Math.Exp(-decayRate * distanceFromSource);
}
}
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Local lifetime
double localLifetime = numTimeSteps * dt;
// Watch global plasma physics
WatchGlobalPlasmaPhysics();
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
}
}
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[i] += thermalVelocity * rand.NextDouble();
}
// Local lifetime
double localLifetime = numTimeSteps * dt;
// Watch global plasma physics
WatchGlobalPlasmaPhysics();
// Calculate frames per second
double fps = numTimeSteps / (dt * numTimeSteps);
Console.WriteLine("Frames Per Second: " + fps);
// Add thermal motion to particle velocities
double thermalVelocity = Math.Sqrt(2 * epsilon0 * dt / (particleMasses[0] * dx));
for (int i = 0; i < numVolts; i++)
{
particleVelocities[await] += thermalVelocity * rand.NextDouble();
}
// The method bodies, field initializers, and property accessor bodies have been eliminated for brevity.
class PlasmaPhysicselectricalEngineering
{
static async void Main(string[] args)
{
// Add probability
double probability = 0.5;
// Add input button map
Dictionary<string, string> inputButtonMap = new Dictionary<string, string>();
inputButtonMap.Add("Button1", "Action1");
inputButtonMap.Add("Button2", "Action2");
inputButtonMap.Add("Button3", "Action3");
// Rest of the code
}
}
// Add hard drive disk
class HardDriveDisk
{
// Properties
public string Model { get; set; }
public int Capacity { get; set; }
public string InterfaceType { get; set; }
// Constructor
public HardDriveDisk(string model, int capacity, string interfaceType)
{
Model = model;
Capacity = capacity;
InterfaceType = interfaceType;
}
// Methods