-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspline_model.py
257 lines (199 loc) · 10.9 KB
/
spline_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import model_helper_functions as mhf
from splines import create_splines
from numpy.linalg import norm
import tensorflow as tf
class SplineModel:
def __init__(self, covariates, spline_count, x_vars, y_var: str=None,
penalize: bool=True, resolution: int=500, seed: int=0,
intra_op_parallelism_threads: int=0, inter_op_parallelism_threads: int=0):
"""
Constructor only takes the basic info necessary to define the model,
then methods will be available for the user to crete the model,
fit the model to a particular data set, or add additional indicators.
:param covariates:
:param spline_count:
:param x_vars:
:param y_var:
:param seed:
"""
tf.set_random_seed(seed)
mhf.validate_and_save_inputs(self, covariates, spline_count, x_vars, y_var)
self.indicators = {x: [] for x in getattr(self, "x_vars") + [y_var]}
self.penalize = penalize
self.resolution = resolution
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.intra_op_parallelism_threads = intra_op_parallelism_threads
self.inter_op_parallelism_threads = inter_op_parallelism_threads
def make(self):
self._make_placeholders()
self._make_coefficients()
self._make_model()
self._make_penalties()
self._make_objective_functions()
self._make_optimizers()
def fit_one(self, var: str, raw_data, tolerance: float=0.01, print_freq: int=500):
"""
Used to fit one X variable and return the data.
:param var:
:param raw_data:
:param tolerance:
:param print_freq:
:return:
"""
data, mean, stdev = mhf.normalize(raw_data)
data = {getattr(self, "placeholders").get(var): data}
prediction = self._fit(var, data, tolerance, print_freq)
prediction = mhf.undo_normalize(prediction[0], mean, stdev)
return prediction
def fit_multi(self, fit_vars: list, raw_data: dict, tolerance: float=0.01, print_freq: int=500):
"""
Used to fit all variables, and save a dictionary to the object which stores the fitted values.
"""
predictions = {}
# When fitting the Y Variable, add placeholders for all other variables to the feed dict
data = {getattr(self, "placeholders").get(var): raw_data.get(var)
for var in getattr(self, 'x_vars') + [getattr(self, 'y_var')]}
for var in fit_vars:
predictions[var] = self._fit(var, data, tolerance, print_freq)
return predictions
def _fit(self, var, data, tol, pr_freq):
"""
Holds the logic for fitting a model to a variable.
"""
gradients = getattr(self, "optimizers").get(var).compute_gradients(getattr(self, "objectives").get(var))
minimizer = getattr(self, "optimizers").get(var).apply_gradients(gradients, global_step=self.global_step)
counter = 0
config = tf.ConfigProto(intra_op_parallelism_threads=self.intra_op_parallelism_threads,
inter_op_parallelism_threads=self.inter_op_parallelism_threads,
allow_soft_placement=True)
print(f"Fitting {var}")
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# Print the starting values
grad, loss = sess.run([gradients[0][0], getattr(self, "objectives").get(var)], feed_dict=data)
grad = norm(grad)
print(f"Iterations: {counter} loss: {loss} grad: {grad}")
while grad > tol:
_, grad, loss = sess.run([minimizer, gradients[0][0], getattr(self, "objectives").get(var)],
feed_dict=data)
grad = norm(grad)
counter += 1
if 0 == counter % pr_freq:
print(f"Iterations: {counter} loss: {loss} grad: {grad}")
# Print the final values
print(f"Iterations: {counter} loss: {loss} grad: {grad}")
# When done training, get the prediction
prediction = sess.run([tf.gather_nd(getattr(self, "models").get(var),
mhf.match_indices(larger=self.resolution,
smaller=getattr(self, "data_shape")))])
return prediction
def _make_placeholders(self):
"""
Make the placeholder objects for the data that will be passed to the fit function by the user.
"""
placeholders = {}
# Make the placeholders for the penalty values
for var in getattr(self, 'x_vars'):
for cov in getattr(self, 'covariates'):
ph_name = f"{var}_{cov}_penalty"
placeholders[ph_name] = tf.placeholder(dtype=tf.float32,
shape=[1], name=ph_name)
# Make the placeholders for the data to be fitted
for var in getattr(self, 'x_vars') + [getattr(self, 'y_var')]:
ph_name = f"{var}_placeholder"
placeholders[var] = tf.placeholder(dtype=tf.float32,
shape=getattr(self, "data_shape"), name=ph_name)
setattr(self, "placeholders", placeholders)
def _make_coefficients(self):
coefficients = {}
for x_var in getattr(self, "x_vars"):
if 1 == getattr(self, "dimension"):
coefficients[x_var] = tf.Variable(initial_value=tf.random_normal([getattr(self, "spline_total") + 1],
mean=0.0, stddev=0.001),
dtype=tf.float32,
name=f"{x_var}_coefficients")
else:
coefficients[x_var] = tf.Variable(initial_value=tf.random_normal([getattr(self, "spline_total") + 1],
mean=0.0, stddev=0.001),
dtype=tf.float32,
name=f"{x_var}_coefficients")
setattr(self, "coefficients", coefficients)
def _make_model(self):
models = {}
# Construct the splines for use in the model
# If we have a two dimensional model, create the 2D splines and use them
if 1 == getattr(self, "dimension"):
model_splines = tf.transpose(tf.constant(create_splines(getattr(self, "spline_total"),
resolution=self.resolution),
dtype=tf.float32))
sum_axis = 1
else:
from splines import tensor_product
s1 = create_splines(getattr(self, "spline_counts")[0])
s2 = create_splines(getattr(self, "spline_counts")[1])
model_splines = tf.transpose(tensor_product(s1, s2))
sum_axis = 2
# Construct the model for each variable
for var in getattr(self, 'x_vars'):
model = tf.reduce_sum(tf.multiply(model_splines, getattr(self, "coefficients").get(var)),
axis=sum_axis, name=f"{var}_model")
models[var] = model
# If there is a Y variable for the model, create that model
if isinstance(getattr(self, "y_var"), str):
model = tf.constant(0., dtype=tf.float32)
for m in models.keys():
model = model + models[m]
models[getattr(self, "y_var")] = model
setattr(self, "models", models)
def _make_penalties(self):
penalties = {}
if self.penalize:
for var in getattr(self, 'x_vars'):
if 1 == getattr(self, "dimension"):
penalties[var] = mhf.quadratic_finite_difference(
getattr(self, "coefficients").get(var)[1:])
else:
penalties[var] = 0.
else:
for var in getattr(self, 'x_vars'):
setattr(self, f"{var}_penalty", tf.constant(0., dtype=tf.float32))
setattr(self, "penalties", penalties)
def _make_objective_functions(self):
objectives = {}
# Define the objective functions for all X variable models.
# Often, the splines will have far more input values than the actual data, so we need to make
# sure that we grab the correct number of evenly spaced spline outputs for this calculation.
indices = mhf.match_indices(larger=self.resolution, smaller=getattr(self, "data_shape"))
data_indices = mhf.match_indices(larger=getattr(self, "data_shape"), smaller=getattr(self, "data_shape"))
for var in getattr(self, 'x_vars'):
model = tf.gather_nd(getattr(self, "models").get(var), indices=indices)
data = tf.gather_nd(getattr(self, 'placeholders').get(var), indices=data_indices)
# if 2 == getattr(self, "dimension"):
# # The multidimensional gather function returns a rank 1 tensor,
# # so we need to flatten the data to compare it to the model
# model = tf.reshape(model, [getattr(self, "data_shape")[0], getattr(self, "data_shape")[1]])
obj = tf.reduce_sum(tf.square(tf.subtract(model, data)),
name=f"{var}_objective")
objectives[var] = obj + getattr(self, "penalties").get(var)
# If there is a Y variable, define its objective function.
if isinstance(getattr(self, "y_var"), str):
with getattr(self, "y_var") as y_var:
obj = tf.reduce_sum(tf.square(tf.subtract(
tf.gather(getattr(self, 'models').get(y_var),
indices=mhf.match_indices(larger=self.resolution,
smaller=getattr(self, "data_shape"))),
getattr(self, 'placeholders').get(y_var))),
name=f"{y_var}_objective")
objectives[y_var] = obj
setattr(self, "objectives", objectives)
def _make_optimizers(self):
optimizers = {}
for var in getattr(self, 'x_vars'):
learning_rate = tf.train.exponential_decay(learning_rate=20., global_step=self.global_step,
decay_steps=100, decay_rate=0.9, staircase=True,
name=f"{var}_learning_rate")
optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate, name=f"{var}_optimizer")
optimizers[var] = optimizer
setattr(self, "optimizers", optimizers)
def add_indicator(self, **kwargs):
pass