-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNewNxdataCurve.py
541 lines (468 loc) · 21.5 KB
/
NewNxdataCurve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2017-2020 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module defines widgets used by _NXdataView.
"""
__authors__ = ["P. Knobel, Shun Yu"]
__license__ = "MIT"
__date__ = "12/11/2018"
import logging
import numpy
from silx.gui import qt, icons
from silx.gui.plot.actions import PlotAction
from silx.gui.data.NumpyAxesSelector import NumpyAxesSelector
from silx.gui.plot import PlotWindow, Plot1D, Plot2D, StackView, ScatterView
from silx.gui.plot.ComplexImageView import ComplexImageView
from silx.gui.colors import Colormap
from silx.gui.widgets.FrameBrowser import HorizontalSliderWithBrowser
from silx.math.calibration import ArrayCalibration, NoCalibration, LinearCalibration
_logger = logging.getLogger(__name__)
class ArrayCurvePlot(qt.QWidget):
"""
Widget for plotting a curve from a multi-dimensional signal array
and a 1D axis array.
The signal array can have an arbitrary number of dimensions, the only
limitation being that the last dimension must have the same length as
the axis array.
The widget provides sliders to select indices on the first (n - 1)
dimensions of the signal array, and buttons to add/replace selected
curves to the plot.
This widget also handles simple 2D or 3D scatter plots (third dimension
displayed as colour of points).
"""
def __init__(self, parent=None):
"""
:param parent: Parent QWidget
"""
super(ArrayCurvePlot, self).__init__(parent)
self.__signals = None
self.__signals_names = None
self.__signal_errors = None
self.__axis = None
self.__axis_name = None
self.__x_axis_errors = None
self.__values = None
self.__old_plotmode = None
self.__waterfallfactor = 1
self._plot = Plot1D()
self._selector = NumpyAxesSelector(self)
self._selector.setNamedAxesSelectorVisibility(True)
self._selector.show()
self.__selector_is_connected = False
self._plot.sigActiveCurveChanged.connect(self._setYLabelFromActiveLegend)
layout = qt.QVBoxLayout()
layout.setContentsMargins(0, 0, 0, 0)
layout.addWidget(self._plot)
layout.addWidget(self._selector)
self.setLayout(layout)
def getPlot(self):
"""Returns the plot used for the display
:rtype: Plot1D
"""
return self._plot
def setCurvesData(self, ys, x=None,
yerror=None, xerror=None,
ylabels=None, xlabel=None, title=None,
xscale=None, yscale=None, aziselector=None, legend=None, plotmode=1):
"""
:param List[ndarray] ys: List of arrays to be represented by the y (vertical) axis.
It can be multiple n-D array whose last dimension must
have the same length as x (and values must be None)
:param ndarray x: 1-D dataset used as the curve's x values. If provided,
its lengths must be equal to the length of the last dimension of
``y`` (and equal to the length of ``value``, for a scatter plot).
:param ndarray yerror: Single array of errors for y (same shape), or None.
There can only be one array, and it applies to the first/main y
(no y errors for auxiliary_signals curves).
:param ndarray xerror: 1-D dataset of errors for x, or None
:param str ylabels: Labels for each curve's Y axis
:param str xlabel: Label for X axis
:param str title: Graph title
:param str xscale: Scale of X axis in (None, 'linear', 'log')
:param str yscale: Scale of Y axis in (None, 'linear', 'log')
"""
self.__signals = ys
#print(ys.shape)
self.__signals_names = ylabels or (["Y"] * len(ys))
self.__signal_errors = yerror
self.__axis = x
self.__axis_name = xlabel
self.__x_axis_errors = xerror
self.__title = title
self.__legend = legend
self.__plotmode = plotmode
self.aziselector = aziselector
if self.__selector_is_connected:
try:
self._selector.selectionChanged.disconnect(self._updateCurve)
except:
self._selector.selectionChanged.disconnect(self._updatewaterfall)
self.__selector_is_connected = False
#self._selector.setSelection([])
#if self.__plotmode != 3:
if self.aziselector == None :
if ys.ndim == 1:
self._selector.setData(ys)
elif ys.ndim == 2:
self._selector.setData(ys[slice(0, None, 1), slice(None,None,None)])
#self._selector.setAxisNames(["Y"])
else:
self._selector.setData(ys[slice(0, None, 1), slice(0, None, 1), slice(None,None,None)])
#self._selector.setAxisNames(["Y"])
else:
#ys = numpy.moveaxis(ys, -1, 1)
ys = numpy.sum(ys[:,self.aziselector[0]:self.aziselector[1],:], axis=1)
self._selector.setData(ys)
#self._selector.setAxisNames(["Y"])
#self._selector.setSelection([(slice(0, -1, 1), slice(0,-1,1), slice(None))])
if self._selector.data() is not None:
print("Data is assigned")
else:
print("Data is empty")
self._selector.setAxisNames(["Y"])
#self._selector.setCustomAxis(["sequence", "azimuthal", "Intensity"])
#if len(ys[0].shape) < 3:
# self._selector.hide()
#else:
self._selector.show()
self._plot.setGraphTitle(title or "")
if xscale is not None:
self._plot.getXAxis().setScale(
'log' if xscale == 'log' else 'linear')
if yscale is not None:
self._plot.getYAxis().setScale(
'log' if yscale == 'log' else 'linear')
self._updateCurve()
if not self.__selector_is_connected:
self._selector.selectionChanged.connect(self._updateCurve)
self.__selector_is_connected = True
def _updateCurve(self):
#print(self.__old_plotmode)
if self.__plotmode == 1:
self._plot.remove(kind="curve")
Curve = self._plot.getActiveCurve()
data = self._selector.selectedData()
Curve = self._plot.addCurve(self.__axis, data, legend=self.__legend,
xerror=self.__x_axis_errors,
yerror=None, xlabel=self.__axis_name)
Curve
self._plot.resetZoom()
self.__old_plotmode = 1
elif self.__plotmode == 2:
if self.__old_plotmode == 1:
self._plot.remove("data", kind="curve")
elif self.__old_plotmode == 3 or self.__old_plotmode == 4:
self._plot.remove(kind="curve")
#Curve = self._plot.getActiveCurve()
data = self._selector.selectedData()
Curve = self._plot.addCurve(self.__axis, data, legend=self.__legend,
xerror=self.__x_axis_errors,
yerror=None, xlabel=self.__axis_name)
Curve
self._plot.resetZoom()
self.__old_plotmode = 2
#print(self.__old_plotmode)
def Setwaterfall(self, ys, x=None,
yerror=None, xerror=None,
ylabels=None, xlabel=None, title=None,
xscale=None, yscale=None, legend=None, selector = None, qselector = None, aziselector=None, factor = 1, plotmode=3):
self._plot.remove(kind="curve")
#print(self.__old_plotmode)
self.__signals_names = ylabels or (["Y"] * len(ys))
self.__signal_errors = yerror
self.__axis = x
self.__axis_name = xlabel
self.__x_axis_errors = xerror
self.__title = title
self.__legend = legend
self.__plotmode = plotmode
self.__waterfallfactor = factor
self.arrayselector = selector
if self.__selector_is_connected:
try:
self._selector.selectionChanged.disconnect(self._updateCurve)
except:
self._selector.selectionChanged.disconnect(self._updatewaterfall)
self.__selector_is_connected = False
if aziselector is None:
if ys.ndim == 2:
self.__signals = ys[slice(selector[0], selector[1], selector[2]),:]
else:
if qselector is None:
self.__signals = ys[...,slice(selector[0], selector[1], selector[2]), :]
else:
self.__signals = numpy.sum(ys[...,slice(selector[0], selector[1], selector[2]), qselector[0]:qselector[1], :], axis = -2)
else:
self.__signals = numpy.sum(ys[..., slice(selector[0], selector[1], selector[2]), aziselector[0]:aziselector[1], :], axis= -2)
ind = numpy.indices(self.__signals.shape[:-2])
self._selector.setData(ind)
if len(self.__signals.shape) <= 2:
self._selector.hide()
else:
self._selector.show()
self._updatewaterfall()
if not self.__selector_is_connected:
self._selector.selectionChanged.connect(self._updatewaterfall)
self.__selector_is_connected = True
#self._selector.clear()
def _updatewaterfall(self):
selection = self._selector.selection()
if self.__plotmode == 3:
sequence = 0
for curve in self.__signals[selection]:
#for curve in images:
self._plot.addCurve(self.__axis, curve*self.__waterfallfactor**sequence, legend=self.__legend+'_'+str(self.arrayselector[0]+sequence*self.arrayselector[2]))
sequence += 1
self.__old_plotmode = 3
if self.__plotmode == 4:
sequence = 0
for curve in self.__signals[selection]:
#for curve in images:
self._plot.addCurve(self.__axis, curve+self.__waterfallfactor*sequence, legend=self.__legend+'_'+str(self.arrayselector[0]+sequence*self.arrayselector[2]))
sequence += 1
self.__old_plotmode = 4
#selection = self._selector.selection()
#s = self._selector.selectedData()
#print(selection)
#print(ys)
'''
def _updateCurve(self):
selection = self._selector.selection()
print(selection)
#ys = [sig[selection] for sig in self.__signals]
ys = self.__signals[selection]
y0 = ys[0,0]
len_y = len(y0)
x = self.__axis
if x is None:
x = numpy.arange(len_y)
elif numpy.isscalar(x) or len(x) == 1:
# constant axis
x = x * numpy.ones_like(y0)
elif len(x) == 2 and len_y != 2:
# linear calibration a + b * x
x = x[0] + x[1] * numpy.arange(len_y)
self._plot.remove(kind=("curve",))
for i in range(len(self.__signals)):
legend = self.__signals_names[i]
# errors only supported for primary signal in NXdata
y_errors = None
if i == 0 and self.__signal_errors is not None:
y_errors = self.__signal_errors[self._selector.selection()]
self._plot.addCurve(x, ys[i], legend=legend,
xerror=self.__x_axis_errors,
yerror=y_errors)
if i == 0:
self._plot.setActiveCurve(legend)
self._plot.resetZoom()
self._plot.getXAxis().setLabel(self.__axis_name)
self._plot.getYAxis().setLabel(self.__signals_names[0])
'''
def _setYLabelFromActiveLegend(self, previous_legend, new_legend):
for ylabel in self.__signals_names:
if new_legend is not None and new_legend == ylabel:
self._plot.getYAxis().setLabel(ylabel)
break
def clear(self):
old = self._selector.blockSignals(True)
self._selector.clear()
self._selector.blockSignals(old)
self._plot.clear()
class ArrayImagePlot(qt.QWidget):
"""
Widget for plotting an image from a multi-dimensional signal array
and two 1D axes array.
The signal array can have an arbitrary number of dimensions, the only
limitation being that the last two dimensions must have the same length as
the axes arrays.
Sliders are provided to select indices on the first (n - 2) dimensions of
the signal array, and the plot is updated to show the image corresponding
to the selection.
If one or both of the axes does not have regularly spaced values, the
the image is plotted as a coloured scatter plot.
"""
def __init__(self, parent=None):
"""
:param parent: Parent QWidget
"""
super(ArrayImagePlot, self).__init__(parent)
self.__signals = None
self.__signals_names = None
self.__x_axis = None
self.__x_axis_name = None
self.__y_axis = None
self.__y_axis_name = None
self._plot = Plot2D(self)
self._plot.setDefaultColormap(Colormap(name="viridis",
vmin=None, vmax=None,
normalization=Colormap.LOGARITHM))
self._plot.getIntensityHistogramAction().setVisible(True)
self._plot.setKeepDataAspectRatio(False)
# not closable
self._selector = NumpyAxesSelector(self)
self._selector.setNamedAxesSelectorVisibility(False)
self._selector.selectionChanged.connect(self._updateImage)
self._auxSigSlider = HorizontalSliderWithBrowser(parent=self)
self._auxSigSlider.setMinimum(0)
self._auxSigSlider.setValue(0)
self._auxSigSlider.valueChanged[int].connect(self._sliderIdxChanged)
self._auxSigSlider.setToolTip("Select auxiliary signals")
layout = qt.QVBoxLayout()
layout.addWidget(self._plot)
layout.addWidget(self._selector)
layout.addWidget(self._auxSigSlider)
self.setLayout(layout)
def _sliderIdxChanged(self, value):
self._updateImage()
def getPlot(self):
"""Returns the plot used for the display
:rtype: Plot2D
"""
return self._plot
def setImageData(self, signals,
x_axis=None, y_axis=None,
signals_names=None,
xlabel=None, ylabel=None,
title=None, isRgba=False,
xscale=None, yscale=None):
"""
:param signals: list of n-D datasets, whose last 2 dimensions are used as the
image's values, or list of 3D datasets interpreted as RGBA image.
:param x_axis: 1-D dataset used as the image's x coordinates. If
provided, its lengths must be equal to the length of the last
dimension of ``signal``.
:param y_axis: 1-D dataset used as the image's y. If provided,
its lengths must be equal to the length of the 2nd to last
dimension of ``signal``.
:param signals_names: Names for each image, used as subtitle and legend.
:param xlabel: Label for X axis
:param ylabel: Label for Y axis
:param title: Graph title
:param isRgba: True if data is a 3D RGBA image
:param str xscale: Scale of X axis in (None, 'linear', 'log')
:param str yscale: Scale of Y axis in (None, 'linear', 'log')
"""
self._selector.selectionChanged.disconnect(self._updateImage)
self._auxSigSlider.valueChanged.disconnect(self._sliderIdxChanged)
self.__signals = signals
self.__signals_names = signals_names
self.__x_axis = x_axis
self.__x_axis_name = xlabel
self.__y_axis = y_axis
self.__y_axis_name = ylabel
self.__title = title
self._selector.clear()
if not isRgba:
self._selector.setAxisNames(["Y", "X"])
img_ndim = 2
else:
self._selector.setAxisNames(["Y", "X", "RGB(A) channel"])
img_ndim = 3
self._selector.setData(signals[0])
if len(signals[0].shape) <= img_ndim:
self._selector.hide()
else:
self._selector.show()
self._auxSigSlider.setMaximum(len(signals)-1)
if len(signals) > 1:
self._auxSigSlider.show()
self._auxSigSlider.setValue(1)
else:
self._auxSigSlider.hide()
self._auxSigSlider.setValue(0)
self._axis_scales = xscale, yscale
self._updateImage()
self._plot.resetZoom()
self._selector.selectionChanged.connect(self._updateImage)
self._auxSigSlider.valueChanged.connect(self._sliderIdxChanged)
def _updateImage(self):
selection = self._selector.selection()
auxSigIdx = self._auxSigSlider.value()
legend = self.__signals_names[auxSigIdx]
images = [img[selection] for img in self.__signals]
image = images[auxSigIdx]
x_axis = self.__x_axis
y_axis = self.__y_axis
if x_axis is None and y_axis is None:
xcalib = NoCalibration()
ycalib = NoCalibration()
else:
if x_axis is None:
# no calibration
x_axis = numpy.arange(image.shape[1])
elif numpy.isscalar(x_axis) or len(x_axis) == 1:
# constant axis
x_axis = x_axis * numpy.ones((image.shape[1], ))
elif len(x_axis) == 2:
# linear calibration
x_axis = x_axis[0] * numpy.arange(image.shape[1]) + x_axis[1]
if y_axis is None:
y_axis = numpy.arange(image.shape[0])
elif numpy.isscalar(y_axis) or len(y_axis) == 1:
y_axis = y_axis * numpy.ones((image.shape[0], ))
elif len(y_axis) == 2:
y_axis = y_axis[0] * numpy.arange(image.shape[0]) + y_axis[1]
xcalib = ArrayCalibration(x_axis)
ycalib = ArrayCalibration(y_axis)
self._plot.remove(kind=("scatter", "image",))
if xcalib.is_affine() and ycalib.is_affine():
# regular image
xorigin, xscale = xcalib(0), xcalib.get_slope()
yorigin, yscale = ycalib(0), ycalib.get_slope()
origin = (xorigin, yorigin)
scale = (xscale, yscale)
self._plot.getXAxis().setScale('linear')
self._plot.getYAxis().setScale('linear')
self._plot.addImage(image, legend=legend,
origin=origin, scale=scale,
replace=True, resetzoom=False)
else:
xaxisscale, yaxisscale = self._axis_scales
if xaxisscale is not None:
self._plot.getXAxis().setScale(
'log' if xaxisscale == 'log' else 'linear')
if yaxisscale is not None:
self._plot.getYAxis().setScale(
'log' if yaxisscale == 'log' else 'linear')
scatterx, scattery = numpy.meshgrid(x_axis, y_axis)
# fixme: i don't think this can handle "irregular" RGBA images
self._plot.addScatter(numpy.ravel(scatterx),
numpy.ravel(scattery),
numpy.ravel(image),
legend=legend)
if self.__title:
title = self.__title
if len(self.__signals_names) > 1:
# Append dataset name only when there is many datasets
title += '\n' + self.__signals_names[auxSigIdx]
else:
title = self.__signals_names[auxSigIdx]
self._plot.setGraphTitle(title)
self._plot.getXAxis().setLabel(self.__x_axis_name)
self._plot.getYAxis().setLabel(self.__y_axis_name)
def clear(self):
old = self._selector.blockSignals(True)
self._selector.clear()
self._selector.blockSignals(old)
self._plot.clear()