-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathutils.py
204 lines (173 loc) · 7.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import pickle
import numpy as np
import pandas as pd
import scipy
import torch
from itertools import compress
from torch import nn
from torch.utils.data import DataLoader, SubsetRandomSampler
from tqdm import tqdm
import fasttext
def load_dataframes(data_dir, data_filename, adam_path):
train = pd.read_csv(os.path.join(data_dir, 'train', data_filename), engine='c')
valid = pd.read_csv(os.path.join(data_dir, 'valid', data_filename), engine='c')
test = pd.read_csv(os.path.join(data_dir, 'test', data_filename), engine='c')
adam_df = pd.read_csv(adam_path, sep='\t')
unique_labels = adam_df.EXPANSION.unique()
label_to_ix = {label: ix for ix, label in enumerate(unique_labels)}
train['LABEL_NUM'] = train.LABEL.apply(lambda l: label_to_ix[l])
valid['LABEL_NUM'] = valid.LABEL.apply(lambda l: label_to_ix[l])
test['LABEL_NUM'] = test.LABEL.apply(lambda l: label_to_ix[l])
return train, valid, test, label_to_ix
def load_model(net, load_path, device='cpu'):
try:
pretrained = torch.load(load_path, map_location=device).state_dict()
except:
pretrained = torch.load(load_path, map_location=device)
if os.path.splitext(load_path)[-1] == '.tar':
pretrained = pretrained['model_state_dict']
print('pretrained: {}'.format(pretrained.keys()))
for key, value in pretrained.items():
new_key = key[len('module.'): ] if key.startswith('module.') else key
if new_key not in net.state_dict():
print(new_key, 'not expected')
continue
try:
net.state_dict()[new_key].copy_(value)
except:
print(new_key, 'not loaded')
continue
return net
def evaluate(model, model_type, loader, dataset, criterion, verbose=False, full=True):
running_loss = 0.0
count = 0.
correct = 0.
total = 0.
model.eval()
with torch.no_grad():
for batch_idx, idx in tqdm(enumerate(loader), disable=not verbose):
if not full and batch_idx >= 10000:
break
if model_type in ["lr"]:
sents, labels = dataset[idx]
outputs = model.forward(sents)
elif model_type in ["trm", "rnnsoft", "disbert", "electra", "rnn", "clibert", "biobert"]:
sents, locs, labels = dataset[idx]
if labels.numel() == 0:
continue
outputs = model(sents, locs)
elif model_type in ["atetm"]:
sents, bows, locs, labels = dataset[idx]
outputs, etm_loss = model(sents, bows, locs)
else:
sents, mixtures, locs, labels = dataset[idx]
outputs = model(sents, mixtures, locs)
loss = criterion(outputs, labels)
running_loss += loss.item()
correct += torch.sum(outputs.argmax(dim=-1) == labels).item()
total += labels.size(0)
count += 1
accuracy = correct / total
loss = running_loss / count
return loss, accuracy
def train_loop(net, model_type, optimizer, criterion, train_data, valid_data, n_epochs, batch_size, save_dir=None,
verbose=False, scheduler=None, eval_every=10000, save_every=40, clip=0, writer=None, accum_num=1):
logs = {k: [] for k in ['train_loss', 'valid_loss', 'train_acc', 'valid_acc']}
intermediate_logs = {k: [] for k in ['epoch', 'iteration', 'train_loss', 'valid_loss', 'train_acc', 'valid_acc']}
break_cnt = 0
train_loader = DataLoader(
range(len(train_data)),
shuffle=True,
batch_size=batch_size
)
valid_loader = DataLoader(
range(len(valid_data)),
shuffle=True,
batch_size=batch_size
)
print("Datasets created:\n")
print("Training set:", len(train_data), "samples\n")
print("Validation set:", len(valid_data), "samples\n")
print("Start training\n")
for epoch in range(n_epochs):
running_loss = 0.0
count = 0.
correct = 0.
total = 0.
net.train()
for idx in tqdm(train_loader):
sents, locs, labels = train_data[idx]
# gradient accumulation
if count > 1 and (count - 1) % accum_num == 0:
optimizer.zero_grad()
if labels.numel() == 0:
continue
outputs = net(sents, locs)
loss = criterion(outputs, labels)
loss.backward()
if clip > 0:
torch.nn.utils.clip_grad_norm_(net.parameters(), clip)
# gradient accumulation
if count > 0 and count % accum_num == 0:
optimizer.step()
running_loss += loss.item()
correct += torch.sum(outputs.argmax(dim=-1) == labels).item()
total += labels.size(0)
if count % eval_every == 0 and count > 0:
net.eval()
valid_loss, valid_acc = evaluate(net, model_type, valid_loader, valid_data, criterion, verbose=verbose, full=False)
net.train()
if scheduler:
scheduler.step(valid_loss)
print(f"End of iteration {count}")
print(f"Train Loss: {running_loss/count:.4f} \tTrain Accuracy:{correct/total:.4f}")
print(f"Valid Loss: {valid_loss:.4f} \tValid Accuracy:{valid_acc:.4f}")
print("="*50)
print()
intermediate_logs['epoch'].append(epoch)
intermediate_logs['iteration'].append(count)
intermediate_logs['train_loss'].append(running_loss/count)
intermediate_logs['train_acc'].append(correct/total)
intermediate_logs['valid_loss'].append(valid_loss)
intermediate_logs['valid_acc'].append(valid_acc)
if not os.path.exists(os.path.join(save_dir)):
os.makedirs(os.path.join(save_dir))
intermediate_log_df = pd.DataFrame(intermediate_logs)
intermediate_log_df.to_csv(os.path.join(save_dir, 'intermediate_logs.csv'))
count += 1
valid_loss, valid_acc = evaluate(net, model_type, valid_loader, valid_data, criterion, verbose=verbose)
if scheduler:
scheduler.step(valid_loss)
print(f"End of epoch {epoch}")
print(f"Train Loss: {running_loss/count:.4f} \tTrain Accuracy:{correct/total:.4f}")
print(f"Valid Loss: {valid_loss:.4f} \tValid Accuracy:{valid_acc:.4f}")
print("="*50)
print()
logs['train_loss'].append(running_loss/count)
logs['train_acc'].append(correct/total)
logs['valid_loss'].append(valid_loss)
logs['valid_acc'].append(valid_acc)
# Tensorboard
if writer:
for key, values in logs.items():
writer.add_scalar(key, values[-1], epoch)
if epoch > 3:
if logs['valid_acc'][-1] < np.sum(logs['valid_acc'][-2]):
break_cnt += 1
if break_cnt == 3:
break
else:
break_cnt = 0
if save_dir and epoch > 0 and (epoch % save_every == 0):
if not os.path.exists(os.path.join(save_dir, 'checkpoints')):
os.makedirs(os.path.join(save_dir, 'checkpoints'))
torch.save({
'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, os.path.join(save_dir, 'checkpoints', str(epoch) + '.tar'))
log_df = pd.DataFrame(logs)
log_df.to_csv(os.path.join(save_dir, 'checkpoints', str(epoch) + '_logs.csv'))
return net,logs