-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNeuralNetwork.hs
54 lines (48 loc) · 1.7 KB
/
NeuralNetwork.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
{-# LANGUAGE TypeOperators #-}
module Examples.NeuralNetwork where
import Data.Function ((&))
import GHC.TypeLits (KnownNat, type (+), type (-))
import HashedExpression
import HashedExpression.Modeling.Typed
import System.FilePath ((</>))
import Prelude hiding ((**), (^))
sigmoid :: (ToShape d) => TypedExpr d R -> TypedExpr d R
sigmoid x = 1.0 / (1.0 + exp (- x))
prependColumn ::
forall m n.
(Injectable 0 (m - 1) m m, Injectable 1 n n (n + 1)) =>
Double ->
TypedExpr '[m, n] R ->
TypedExpr '[m, n + 1] R
prependColumn v exp = inject (range @0 @(m - 1), range @1 @n) exp (constant2D @m @(n + 1) v)
ex4_neuralNetwork :: OptimizationProblem
ex4_neuralNetwork =
let x = param2D @5000 @400 "x"
y = param2D @5000 @10 "y"
-- variables
theta1 = variable2D @401 @25 "theta1"
theta2 = variable2D @26 @10 "theta2"
-- neural net
a1 = prependColumn 1 x
z2 = sigmoid (a1 ** theta1)
a2 = prependColumn 1 z2
hypothesis = sigmoid (a2 ** theta2)
-- regularization
lambda = 1
regTheta1 = project (range @1 @400, range @0 @24) theta1 -- no first row
regTheta2 = project (range @1 @25, range @0 @9) theta2 -- no first row
regularization = (lambda / 2) * (norm2square regTheta1 + norm2square regTheta2)
in OptimizationProblem
{ objective = sumElements ((- y) * log hypothesis - (1 - y) * log (1 - hypothesis)) + regularization,
constraints = [],
values =
[ x :-> VFile (HDF5 "data.h5" "x"),
y :-> VFile (HDF5 "data.h5" "y")
]
}
ex4 :: IO ()
ex4 =
proceed
ex4_neuralNetwork
CSimpleConfig {output = OutputHDF5, maxIteration = Just 400}
("examples" </> "NeuralNetwork")