forked from anmol098/waka-readme-stats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_bar_graph.py
106 lines (83 loc) · 4.02 KB
/
make_bar_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import pandas as pd
import numpy as np
import altair as alt
import json
import os
# npm install vega-lite vega-cli canvas
class BarGraph:
def __init__(self, yearly_data):
self.yearly_data = yearly_data
def build_graph(self):
with open(os.path.join(os.path.dirname(__file__), 'colors.json')) as f:
colors = json.load(f)
allColorsValues = []
# filter data
max_languages = 5
top_languages = {}
for year in self.yearly_data.keys():
for quarter in self.yearly_data[year].keys():
for language in sorted(list(self.yearly_data[year][quarter].keys()),
key=lambda lang: self.yearly_data[year][quarter][lang], reverse=True)[
0:max_languages]:
if 'top' not in self.yearly_data[year][quarter]:
self.yearly_data[year][quarter]['top'] = {}
if self.yearly_data[year][quarter][language] != 0:
self.yearly_data[year][quarter]['top'][language] = self.yearly_data[year][quarter][language]
if language not in top_languages:
top_languages[language] = 1
top_languages[language] += 1
# print(self.yearly_data)
all_languages = list(top_languages.keys())
for language in all_languages:
if colors[language]['color'] is not None:
allColorsValues.append(colors[language]['color'])
languages_all_loc = {}
for language in all_languages:
language_year = []
for year in self.yearly_data.keys():
language_quarter = [0, 0, 0, 0]
for quarter in self.yearly_data[year].keys():
if language in self.yearly_data[year][quarter]['top']:
language_quarter[quarter - 1] = self.yearly_data[year][quarter]['top'][language]
else:
language_quarter[quarter - 1] = 0
language_year.append(language_quarter)
languages_all_loc[language] = language_year
# print(languages_all_loc)
language_df = {}
def prep_df(df, name):
df = df.stack().reset_index()
df.columns = ['c1', 'c2', 'values']
df['Language'] = name
return df
for language in languages_all_loc.keys():
language_df[language] = pd.DataFrame(languages_all_loc[language], index=list(self.yearly_data.keys()),
columns=["Q1", "Q2", "Q3", "Q4"])
for language in language_df.keys():
language_df[language] = prep_df(language_df[language], language)
df = pd.concat(language_df.values())
chart = alt.Chart(df).mark_bar().encode(
# tell Altair which field to group columns on
x=alt.X('c2:N', title=None),
# tell Altair which field to use as Y values and how to calculate
y=alt.Y('sum(values):Q',
axis=alt.Axis(
grid=False,
title='LOC added')),
# tell Altair which field to use to use as the set of columns to be represented in each group
column=alt.Column('c1:N', title=None),
# tell Altair which field to use for color segmentation
color=alt.Color('Language:N',
scale=alt.Scale(
domain=all_languages,
# make it look pretty with an enjoyable color pallet
range=allColorsValues,
),
)) \
.configure_view(
# remove grid lines around column clusters
strokeOpacity=0
)
chart.save('bar_graph.png')
return 'bar_graph.png'