-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathdataset.py
225 lines (182 loc) · 6.72 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import json
import os.path as osp
from collections import OrderedDict, defaultdict
import cv2
import numpy as np
from megengine.data import Collator
from megengine.data.dataset.vision.meta_vision import VisionDataset
class COCOJoints(VisionDataset):
"""
we cannot use the official implementation of COCO dataset here.
The output of __getitem__ function here should be a single person instead of a single image.
"""
supported_order = ("image", "keypoints", "boxes", "info")
keypoint_names = (
"nose",
"left_eye",
"right_eye",
"left_ear",
"right_ear",
"left_shoulder",
"right_shoulder",
"left_elbow",
"right_elbow",
"left_wrist",
"right_wrist",
"left_hip",
"right_hip",
"left_knee",
"right_knee",
"left_ankle",
"right_ankle",
)
min_bbox_h = 0
min_bbox_w = 0
min_bbox_area = 1500
min_bbox_score = 1e-10
def __init__(
self, root, ann_file, order, image_set="train", remove_untypical_ann=True
):
super(COCOJoints, self).__init__(
root, order=order, supported_order=self.supported_order
)
self.keypoint_num = len(self.keypoint_names)
self.root = root
self.image_set = image_set
self.order = order
if isinstance(ann_file, str):
with open(ann_file, "r") as f:
dataset = json.load(f)
else:
dataset = ann_file
self.imgs = OrderedDict()
for img in dataset["images"]:
# for saving memory
if "license" in img:
del img["license"]
if "coco_url" in img:
del img["coco_url"]
if "date_captured" in img:
del img["date_captured"]
if "flickr_url" in img:
del img["flickr_url"]
self.imgs[img["id"]] = img
self.ids = list(sorted(self.imgs.keys()))
selected_anns = []
for ann in dataset["annotations"]:
if "iscrowd" in ann.keys() and ann["iscrowd"]:
continue
if remove_untypical_ann:
if "keypoints" in ann.keys() and "keypoints" in self.order:
joints = np.array(ann["keypoints"]).reshape(self.keypoint_num, 3)
if np.sum(joints[:, -1]) == 0 or ann["num_keypoints"] == 0:
continue
if "bbox" in ann.keys() and "bbox" in self.order:
x, y, h, w = ann["bbox"]
if (
h < self.min_bbox_h
or w < self.min_bbox_w
or h * w < self.min_bbox_area
):
continue
if "score" in ann.keys() and "score" in self.order:
if ann["score"] < self.min_bbox_score:
continue
selected_anns.append(ann)
self.anns = selected_anns
def __len__(self):
return len(self.anns)
def get_image_info(self, index):
img_id = self.anns[index]["image_id"]
img_info = self.imgs[img_id]
return img_info
def __getitem__(self, index):
ann = self.anns[index]
img_id = ann["image_id"]
target = []
for k in self.order:
if k == "image":
file_name = self.imgs[img_id]["file_name"]
img_path = osp.join(self.root, self.image_set, file_name)
image = cv2.imread(img_path, cv2.IMREAD_COLOR)
target.append(image)
elif k == "keypoints":
joints = (
np.array(ann["keypoints"])
.reshape(len(self.keypoint_names), 3)
.astype(np.float)
)
joints = joints[np.newaxis]
target.append(joints)
elif k == "boxes":
x, y, w, h = np.array(ann["bbox"]).reshape(4)
bbox = [x, y, x + w, y + h]
bbox = np.array(bbox, dtype=np.float32)
target.append(bbox[np.newaxis])
elif k == "info":
info = self.imgs[img_id]
info = [
info["height"],
info["width"],
info["file_name"],
ann["image_id"],
]
if "score" in ann.keys():
info.append(ann["score"])
target.append(info)
return tuple(target)
class HeatmapCollator(Collator):
def __init__(
self,
image_shape,
heatmap_shape,
keypoint_num,
heat_thr,
heat_kernel,
heat_range=255,
):
super().__init__()
self.image_shape = image_shape
self.heatmap_shape = heatmap_shape
self.keypoint_num = keypoint_num
self.heat_thr = heat_thr
self.heat_kernel = heat_kernel
self.heat_range = heat_range
self.stride = image_shape[1] // heatmap_shape[1]
ax = (np.arange(0, heatmap_shape[1]) + 0.5) * self.stride - 0.5
ay = (np.arange(0, heatmap_shape[0]) + 0.5) * self.stride - 0.5
self.grid_x, self.grid_y = np.meshgrid(ax, ay)
def apply(self, inputs):
"""
assume order = ("images, keypoints, bboxes, info")
"""
batch_data = defaultdict(list)
for image, keypoints, _, info in inputs:
batch_data["data"].append(image)
joint = keypoints[0, :, :2]
dis = (self.grid_x[None] - joint[:, 0, None, None]) ** 2 + (
self.grid_y[None] - joint[:, 1, None, None]
) ** 2
heat_valid = np.array(keypoints[0, :, -1]).astype(np.float32)
heatmaps = []
for k in self.heat_kernel:
heatmap = np.exp(-dis / 2 / k ** 2)
heatmap[heat_valid < 0.1] = 0
heatmap[heatmap < self.heat_thr] = 0
heatmap *= self.heat_range
heatmaps.append(heatmap)
batch_data["heatmap"].append(np.array(heatmaps))
batch_data["heat_valid"].append(heat_valid)
batch_data["info"].append(info)
for key, v in batch_data.items():
if key != "info":
batch_data[key] = np.ascontiguousarray(v).astype(np.float32)
return batch_data