单精度矩阵乘法(SGEMM)是非常典型的计算密集型算子,对SGEMM的优化也经常被当作算子优化从业人员的练手项目。本文将借助于mperf在ARM A55 cpu核心上对SGEMM的性能进行极致优化,过程中会展示mperf辅助性能优化工作的基本逻辑。希望本文的读者对计算机体系结构的基础概念有一定了解,有算子优化经验更好,另外可以补充一些TMA的基础概念。
本文的计算目标是C=A*B,假设矩阵A大小为M*K,矩阵B大小为K*N,则得到矩阵C大小为M*N。为了后文分块操作的方便,这里假设M,N是4的倍数,并选择M=N=K分别为100,200,300,500,700,900的矩阵尺寸进行性能测试。
矩阵乘法的Naive实现为三层循环计算:
//lda:number of columns of A
//ldb:number of columns of B
//ldc:number of columns of C
#define A(i, j) a[(i)*lda + (j)]
#define B(i, j) b[(i)*ldb + (j)]
#define C(i, j) c[(i)*ldc + (j)]
void my_matmul_naive(int m, int n, int k, float* a, int lda, float* b, int ldb,
float* c, int ldc) {
int i, j, p;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (p = 0; p < k; p++) {
C(i, j) = C(i, j) + A(i, p) * B(p, j);
}
}
}
}
此时在M=N=K分别为100,200,300时的mperf性能数据见Naive_mperf
测试命令:
./android_build.sh -m arm64-v8a
copy build_dir/apps/arm_cpu_matmul_naive to your android platform, and run it
从上面链接的mperf数据可以看到 Naive 实现的 GFLOPS甚至不到0.5,而mperf在ARM A55平台实测的峰值浮点算力可以达到14GFLOPs,显然我们还有很长的路要走。分析TMA L1的数据,也即比较 Frontend_Bound、Bad_Speculation、Backend_Bound 和Retiring 的占比,可以发现占比最高的为Backend_Bound,约为50%,据此可以判断 Naive 版本的性能瓶颈在处理器后端。进一步看TMA L2及以上级别的分析数据,发现Backend_Bound中占比最大的是Core_Bound,而Interlock_Bound又占Core_Bound的95%以上,Interlock_FPU又几乎占Interlock_Bound的100%,由此得到当前的优化方向,即降低Interlock_FPU,说明浮点计算单元触发了大量因为数据依赖而引发的pipeline stall。除此之外,我们还观察到FPU_Util为0,因为此时没有进行向量化计算,说明了 Naive 实现未能充分利用处理器的SIMD单元。
早期我们通过下方的简单例子证明了,循环展开可以有效提高FPU_Util,展示如下:
#define UNROLL_RAW1(cb, v0, a...) \
cb(0, ##a)
#define UNROLL_RAW2(cb, v0, a...) \
cb(0, ##a) cb(1, ##a)
#define UNROLL_RAW5(cb, v0, a...) \
cb(0, ##a) cb(1, ##a) cb(2, ##a) cb(3, ##a) cb(4, ##a)
#define UNROLL_RAW10(cb, v0, a...) \
UNROLL_RAW5(cb, v0, ##a) \
cb(5, ##a) cb(6, ##a) cb(7, ##a) cb(8, ##a) cb(9, ##a)
#define UNROLL_RAW20(cb, v0, a...) \
UNROLL_RAW10(cb, v0, ##a) \
cb(10, ##a) cb(11, ##a) cb(12, ##a) cb(13, ##a) cb(14, ##a) cb(15, ##a) \
cb(16, ##a) cb(17, ##a) cb(18, ##a) cb(19, ##a)
#define UNROLL_CALL0(step, cb, v...) UNROLL_RAW##step(cb, 0, ##v)
#define UNROLL_CALL(step, cb, v...) UNROLL_CALL0(step, cb, ##v)
#define THROUGHPUT(cb, func, UNROLL_NUM) \
static int func##_throughput_##UNROLL_NUM() { \
asm volatile( \
UNROLL_CALL(UNROLL_NUM, eor) \
"mov x0, %x[RUNS]\n" \
"1:\n" \
UNROLL_CALL(UNROLL_NUM, cb) \
"subs x0, x0, #1 \n" \
"bne 1b \n" \
: \
: [RUNS] "r"(mperf::RUNS) \
: "cc", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", \
"v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", \
"v19", "x0"); \
return mperf::RUNS * UNROLL_NUM; \
}
#define cb(i) "fmla v" #i ".4s, v" #i ".4s, v" #i ".4s\n"
THROUGHPUT(cb, fmla, 20)
THROUGHPUT(cb, fmla, 10)
THROUGHPUT(cb, fmla, 5)
THROUGHPUT(cb, fmla, 2)
THROUGHPUT(cb, fmla, 1)
在这个例子中,分别对不进行循环展开和以粒度为2、5、10、20的循环展开进行fmla计算,测试结果如下:
UNROLL_NUM:20 | UNROLL_NUM:10 | UNROLL_NUM:5 | UNROLL_NUM:2 | UNROLL_NUM:1 |
---|---|---|---|---|
Interlock_FPU : 0.02681 | Interlock_FPU : 0.02519 | Interlock_FPU : 0.02236 | Interlock_FPU : 0.25727 | Interlock_FPU : 0.49998 |
Metric_GFLOPs_Use : 14.74720 | Metric_GFLOPs_Use : 14.12275 | Metric_GFLOPs_Use : 12.97569 | Metric_GFLOPs_Use : 7.88556 | Metric_GFLOPs_Use : 3.98409 |
通过这个简单的例子我们可以看到,在循环展开的粒度较小时,增大循环展开的粒度可以显著降低Interlock_FPU。这是因为没有循环展开或循环展开特别小的时候,上一次循环还没有执行完成,下一次循环又要读取相同的寄存器,进而造成寄存器依赖。要消除寄存器依赖,首先要保证循环体中不同条指令使用不同的寄存器,并且要保证循环体内指令的条数大于该指令 latency 和该指令的 throughput 的乘积。以本文在a55平台测试fmla 向量计算为例,fmla的latency为4个cycle,并且a55处理器后端只有一个port可以执行fmla向量计算,所以fmla的throughput为1,也即要求循环体指令数大于 4 * 1 才可以解除寄存器依赖,这也符合上述试验结果的变化情况。
在这个测试样例的启发下,我们考虑在 Naive 版本上进行循环展开:在循环最内层采用 8*12 展开,对剩余的行采用 4*12 展开,再对剩余的列先采用 8*4 展开,最后用 4*4 展开。
这里选择8*12是为了更充分的利用寄存器资源,因为ARM A55上面有32个128 bit向量寄存器,以及考虑到本文最后matmul汇编版本的最内层实现大体如下:
- 从A矩阵读8个float到2个向量寄存器,此时应该是8行里面每行的第一个数。
- 从B矩阵读12个float到3个向量寄存器,应该是12列里每列的第一个数。
- 用fmla指令,让B的每个float分别乘以A的两个向量寄存器(注意这里使用的外积计算矩阵乘),产生24个向量结果,也全部存储在寄存器中(24个向量寄存器存储8x12=96个中间结果)。
采用 8*12 展开之后的代码如下:
void my_matmul_unroll(int m, int n, int k, float* a, int lda, float* b, int ldb,
float* c, int ldc) {
int i, j;
for (j = 0; j < n;
j += 12) {
if (j + 12 > n)
break;
for (i = 0; i < m; i += 8) {
if (i + 8 > m)
break;
AddDot8x12(k, &A(i, 0), lda, &B(0, j), ldb, &C(i, j), ldc);
}
if (i != m) {
AddDot4x12(k, &A(i, 0), lda, &B(0, j), ldb, &C(i, j), ldc);
}
}
if (j != n) {
for (; j < n; j += 4) {
for (i = 0; i < m; i += 8) {
if (i + 8 > m)
break;
AddDot8x4(k, &A(i, 0), lda, &B(0, j), ldb, &C(i, j), ldc);
}
if (i != m) {
AddDot4x4(k, &A(i, 0), lda, &B(0, j), ldb, &C(i, j), ldc);
}
}
}
}
关于循环展开,可以用一个图来直观地理解,这里mr=8,nr=12,我们每次用A矩阵的8 * K的小块和B矩阵的K * 12小块来计算C的一个8 * 12小块:
循环展开后的结果为Unroll_mperf
对比M,N,K较小时(注: 在优化寄存器和FPU单元利用率的时候可以把问题规模先限制得比较小,减少访存issue的干扰)循环展开与Naive算法的Interlock_FPU、FPU_Util和GFLOPS:
loop | unroll | loop | unroll | loop | unroll |
---|---|---|---|---|---|
M=N=K=100 | M=N=K=100 | M=N=K=200 | M=N=K=200 | M=N=K=300 | M=N=K=300 |
Interlock_FPU : 0.41489 | Interlock_FPU : 0.11604 | Interlock_FPU : 0.39121 | Interlock_FPU : 0.11293 | Interlock_FPU : 0.34547 | Interlock_FPU : 0.11227 |
Metric_FPU_Util : 0.00000 | Metric_FPU_Util : 0.35740 | Metric_FPU_Util : 0.00000 | Metric_FPU_Util : 0.34510 | Metric_FPU_Util : 0.00000 | Metric_FPU_Util : 0.33232 |
Metric_GFLOPs_Use : 0.36511 | Metric_GFLOPs_Use : 5.73161 | Metric_GFLOPs_Use : 0.34685 | Metric_GFLOPs_Use : 5.50208 | Metric_GFLOPs_Use : 0.30557 | Metric_GFLOPs_Use : 5.24582 |
可以看到循环展开后可以看到Interlock_FPU占比下降明显,同时FPU_util明显上升,GFLOPS有数量级的上升,说明充分利用寄存器资源和提高FPU利用率对提高程序性能有很大帮助。
上图是 unroll 版本与 Naive 版本在不同矩阵尺寸下的性能对比,可以看到循环展开后GFLOPS在矩阵比较小的性能提升还是很明显,原先上文已经分析过了,但是随着矩阵尺寸增大unroll的效果迅速下降。所以现在我们将注意力转移到,如何解决矩阵尺寸增大性能下降的问题。通过分析上节链接的unroll版本的mperf数据,可以看到,随着矩阵尺寸变大到一定程度,Memory_Bound占比逐渐接近50%,替代之前的Interlock_FPU成为新的性能瓶颈。而Memory_Bound占比高主要是Load_Cache造成的,这就指导我们接下来需要进行访存相关的优化。
之所以矩阵尺寸增加,unroll版本的性能会下降,主要原因就是数据无法全部驻留在Cache中,导致数据频繁地在Cache和主存之间换入换出。为了减少对主存的重复访存操作,首先我们能想到的就是分块(unroll 版本的提到的分块是内层分块,目的是优化寄存器和FPU的利用率,请注意区别),将分块之后的数据保存在Cache中。
这里我们选择对N,K维分别进行Nr和Kr粒度的分块,结合循环展开部分的逻辑,整体的分块方式即为:外层选取A矩阵的M*Kr小块和B矩阵的Kr*Nr小块,内层再对这两个小块分别进行mr行和nr列的划分,所以最终内层每次计算mr*Kr的A小块和Kr*nr的B小块,得到C矩阵mr*nr小块的部分中间结果。
关于如何确定Nr和Kr的大小,我们的目标就是使得计算时需要用到的分块可以根据访存频繁的程度保存在CPU的各级存储中,原则就是访问越频繁的分块存储在速度越快的存储上,以及保证优先用满速度快的存储资源之后再下溢。针对matmul, 具体约束条件设定为:
- 将重复访存率最高的mr*nr大小的C小块保存在访存速度最快的寄存器上(unroll版本就是这样假设的)。
- 将下图中红色部分(包括计算完一个mr*Nr的C行块需要重复访问次数最多的mr* Kr的A行块,内层一次计算迭代需要用到的Kr*nr大小的B列块)都保存在L1中。
- 由于计算完每一个mr*Nr的C行块,都需要重复遍历一次整个Kr*Nr大小的B块,因此希望将Kr*Nr大小的B块存放在L2中,使得每次读取Kr*nr的B列块的时候,都是从L2中读取。
依据上面的分配策略,并结合CPU中的各级存储资源(寄存器数量,L1D和L2)的尺寸,便可以确定最佳的Nr,Kr取值:
- 可以根据CPU处理器的寄存器数量得到mr和nr的具体大小,寄存器容量> mr*nr (unroll版本就是遵循这个约束条件取的mr=8,nr=12)
- 根据L1D Cache的大小结合mr和nr计算出Kr,Kr=L1D/(mr+nr)
- 再根据L2的大小计算出B矩阵中的Nr,Nr=(L2-L1D)/Kr
在ARM A55上,最终得到的Nr为252,Kr为256。注意:这里计算得到Nr为256,但是由于我们选择nr为12,因此为了避免不必要的余数处理,选择Nr为12的倍数简化问题。
Kr/Nr分块的代码逻辑如下:
#define kc 256
#define nc 252
void my_mamtmul_block(int m, int n, int k, float *a, int lda, float *b, int ldb,
float *c, int ldc) {
int j, p, pb, ib;
for (p = 0; p < k; p += kc) {
pb = min(k - p, kc);
for (j = 0; j < n; j += nc) {
ib = min(n - j, nc);
InnerKernel(m, ib, pb, &A(0, p), lda, &B(p, j), ldb, &C(0, j), ldc);
}
}
}
添加Kr/Nr分块后的mperf性能数据见Block_mperf
对比Kr/Nr分块前后以下变化明显的数据:
unroll | block | unroll | block |
---|---|---|---|
M=N=K=700 | M=N=K=700 | M=N=K=900 | M=N=K=900 |
Memory_Bound : 0.31008 | Memory_Bound : 0.23551 | Memory_Bound : 0.48435 | Memory_Bound : 0.25875 |
Load_Bound : 0.31003 | Load_Bound : 0.23547 | Load_Bound : 0.48433 | Load_Bound : 0.25870 |
Load_DTLB : 0.01087 | Load_DTLB : 0.01252 | Load_DTLB : 0.01226 | Load_DTLB : 0.02023 |
Load_Cache : 0.30802 | Load_Cache : 0.21025 | Load_Cache : 0.45685 | Load_Cache : 0.23244 |
Store_Bound : 0.00005 | Store_Bound : 0.00004 | Store_Bound : 0.00002 | Store_Bound : 0.00005 |
Store_TLB : 0.00003 | Store_TLB : 0.00010 | Store_TLB : 0.00002 | Store_TLB : 0.00004 |
Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00000 | Store_Buffer : 0.00001 |
Metric_L1D_Miss_Ratio : 0.03458 | Metric_L1D_Miss_Ratio : 0.01878 | Metric_L1D_Miss_Ratio : 0.03515 | Metric_L1D_Miss_Ratio : 0.02113 |
Metric_L1D_RD_Miss_Ratio : 0.03581 | Metric_L1D_RD_Miss_Ratio : 0.02030 | Metric_L1D_RD_Miss_Ratio : 0.03639 | Metric_L1D_RD_Miss_Ratio : 0.02284 |
Metric_L1D_WR_Miss_Ratio : 0.00379 | Metric_L1D_WR_Miss_Ratio : 0.00169 | Metric_L1D_WR_Miss_Ratio : 0.00390 | Metric_L1D_WR_Miss_Ratio : 0.00189 |
Metric_L2D_Miss_Ratio : 0.15673 | Metric_L2D_Miss_Ratio : 0.26215 | Metric_L2D_Miss_Ratio : 0.18801 | Metric_L2D_Miss_Ratio : 0.23144 |
Metric_L2D_RD_Miss_Ratio : 0.31396 | Metric_L2D_RD_Miss_Ratio : 0.52642 | Metric_L2D_RD_Miss_Ratio : 0.37706 | Metric_L2D_RD_Miss_Ratio : 0.46396 |
Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 |
Metric_L3D_Miss_Ratio : 0.18870 | Metric_L3D_Miss_Ratio : 0.05405 | Metric_L3D_Miss_Ratio : 0.23623 | Metric_L3D_Miss_Ratio : 0.05183 |
Metric_L3D_RD_Miss_Ratio : 0.38055 | Metric_L3D_RD_Miss_Ratio : 0.10890 | Metric_L3D_RD_Miss_Ratio : 0.47494 | Metric_L3D_RD_Miss_Ratio : 0.10425 |
Metric_Load_Port_Util : 0.12046 | Metric_Load_Port_Util : 0.13779 | Metric_Load_Port_Util : 0.09069 | Metric_Load_Port_Util : 0.13191 |
Metric_Store_Port_Util : 0.07090 | Metric_Store_Port_Util : 0.08126 | Metric_Store_Port_Util : 0.05370 | Metric_Store_Port_Util : 0.07829 |
Metric_GFLOPs_Use : 3.95044 | Metric_GFLOPs_Use : 4.53463 | Metric_GFLOPs_Use : 3.03964 | Metric_GFLOPs_Use : 4.37174 |
Kr/Nr分块后可以看到在矩阵较大时进行快速矩阵乘法,GFLOPS确实上升不少,Load_Cache和Metric_L3D_RD_Miss_Ratio等均有明显下降。这说明Kr/Nr分块确实大幅减少了对latency非常大的系统主存的访问,优化了程序的访存性能。
分析Kr/Nr分块后测得的mperf数据,可以看到随着矩阵尺寸变大,性能也能保持相对稳定,没有明显下降。但是此时TMA相关参数显示,Backend_Bound中的Memory_Bound占比依旧很高,性能瓶颈还是停留在访存部分。
进一步思考,在上面计算每个mr*nr大小的C小块的时候,每一次迭代都需要读取A矩阵mr*1的数据,而本文测试的矩阵数据都是行主序,所以每行数据之间内存不连续,因此这样访问依旧对Cache不友好。同样在不同迭代中,需要读取矩阵B中不同行的1*nr的数据,也存在数据读取不连续的情况。考虑到分块计算matmul的逻辑下,A的所有行块和B中的所有列块将被读取多次,因此可以通过对A和B提前进行数据PACK,这样只在第一次PACK时候对Cache不友好,后面计算时候频繁多次访问时数据都是连续访存,因此收益巨大。
下图说明了对A/B矩阵分别PACK的过程:
void InnerKernel(int m, int n, int k, float* a, int lda, float* b, int ldb,
float* c, int ldc) {
int i, j;
float packedA[m * k];
float packedB[k * n];
for (j = 0; j < n; j += 12) {
if (j + 12 > n)
break;
PackMatrixB_12(k, &B(0, j), ldb, packedB + j * k);
for (i = 0; i < m; i += 8) {
if (i + 8 > m)
break;
if (0 == j) {
PackMatrixA_8(k, &A(i, 0), lda, packedA + i * k);
}
AddDot8x12(k, packedA + i * k, k, packedB + j * k, 12, &C(i, j),
ldc);
}
if (i != m) {
PackMatrixA_4(k, &A(i, 0), lda, packedA + i * k);
AddDot4x12(k, packedA + i * k, k, packedB + j * k, 12, &C(i, j),
ldc);
}
}
if (j != n) {
for (; j < n; j += 4) {
PackMatrixB_4(k, &B(0, j), ldb, packedB + j * k);
for (i = 0; i < m; i += 8) {
if (i + 8 > m)
break;
AddDot8x4(k, packedA + i * k, k, packedB + j * k, 12, &C(i, j),
ldc);
}
if (i != m) {
AddDot4x4(k, packedA + i * k, k, packedB + j * k, 12, &C(i, j),
ldc);
}
}
}
}
PACK后的mperf性能数据见Pack_mperf
对比PACK前后的数据:
block | pack | block | pack | block | pack | block | pack | block | pack | block | pack |
---|---|---|---|---|---|---|---|---|---|---|---|
M=N=K=100 | M=N=K=100 | M=N=K=200 | M=N=K=200 | M=N=K=300 | M=N=K=300 | M=N=K=500 | M=N=K=500 | M=N=K=700 | M=N=K=700 | M=N=K=900 | M=N=K=900 |
Load_Cache : 0.04850 | Load_Cache : 0.03037 | Load_Cache : 0.05591 | Load_Cache : 0.01925 | Load_Cache : 0.09417 | Load_Cache : 0.05596 | Load_Cache : 0.16088 | Load_Cache : 0.11704 | Load_Cache : 0.20015 | Load_Cache : 0.20065 | Load_Cache : 0.23572 | Load_Cache : 0.22885 |
Interlock_FPU : 0.09043 | Interlock_FPU : 0.34918 | Interlock_FPU : 0.08863 | Interlock_FPU : 0.37332 | Interlock_FPU : 0.08732 | Interlock_FPU : 0.36597 | Interlock_FPU : 0.07988 | Interlock_FPU : 0.34384 | Interlock_FPU : 0.07642 | Interlock_FPU : 0.31200 | Interlock_FPU : 0.07156 | Interlock_FPU : 0.30176 |
Metric_L1D_TLB_Miss_Ratio : 0.00090 | Metric_L1D_TLB_Miss_Ratio : 0.00224 | Metric_L1D_TLB_Miss_Ratio : 0.00483 | Metric_L1D_TLB_Miss_Ratio : 0.00235 | Metric_L1D_TLB_Miss_Ratio : 0.00685 | Metric_L1D_TLB_Miss_Ratio : 0.00294 | Metric_L1D_TLB_Miss_Ratio : 0.01143 | Metric_L1D_TLB_Miss_Ratio : 0.00328 | Metric_L1D_TLB_Miss_Ratio : 0.01573 | Metric_L1D_TLB_Miss_Ratio : 0.00413 | Metric_L1D_TLB_Miss_Ratio : 0.01915 | Metric_L1D_TLB_Miss_Ratio : 0.00511 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00001 | Metric_L2_TLB_Miss_Ratio : 0.00013 | Metric_L2_TLB_Miss_Ratio : 0.00001 | Metric_L2_TLB_Miss_Ratio : 0.00072 | Metric_L2_TLB_Miss_Ratio : 0.00048 | Metric_L2_TLB_Miss_Ratio : 0.01302 | Metric_L2_TLB_Miss_Ratio : 0.02578 | Metric_L2_TLB_Miss_Ratio : 0.07241 | Metric_L2_TLB_Miss_Ratio : 0.06266 | Metric_L2_TLB_Miss_Ratio : 0.26738 |
L2D_TLB_REFILL 0.000000 | L2D_TLB_REFILL 0.000000 | L2D_TLB_REFILL 0.200000 | L2D_TLB_REFILL 0.700000 | L2D_TLB_REFILL 1.200000 | L2D_TLB_REFILL 10.800000 | L2D_TLB_REFILL 358.600006 | L2D_TLB_REFILL 956.500000 | L2D_TLB_REFILL 72607.601562 | L2D_TLB_REFILL 16910.800781 | L2D_TLB_REFILL 460042.187500 | L2D_TLB_REFILL 157443.500000 |
L2D_TLB 910.400024 | L2D_TLB 822.400024 | L2D_TLB 23194.500000 | L2D_TLB 5456.500000 | L2D_TLB 97020.296875 | L2D_TLB 15094.200195 | L2D_TLB 744285.812500 | L2D_TLB 73438.000000 | L2D_TLB 2816898.500000 | L2D_TLB 233527.500000 | L2D_TLB 7341533.500000 | L2D_TLB 588828.312500 |
Metric_GFLOPs_Use : 6.34394 | Metric_GFLOPs_Use : 7.00634 | Metric_GFLOPs_Use : 6.24761 | Metric_GFLOPs_Use : 7.27444 | Metric_GFLOPs_Use : 5.86449 | Metric_GFLOPs_Use : 6.94621 | Metric_GFLOPs_Use : 5.53592 | Metric_GFLOPs_Use : 6.66007 | Metric_GFLOPs_Use : 5.10062 | Metric_GFLOPs_Use : 5.91676 | Metric_GFLOPs_Use : 4.89490 | Metric_GFLOPs_Use : 5.65741 |
可以看到进行PACK优化后GFLOPS又有一定幅度的增长。此时可以观察到L1D_TLB_Miss_Ratio有所降低,并且在M=N=K >= 700时L2D_TLB_REFILL明显降低,说明PACK确实可以通过减少缺页的发生,减少TLB miss, 从而提升性能。
分析PACK之后的mperf数据,可以发现Backend_Bound占比40%以上,其中Core_Bound中的Interlock_FPU再次成为性能瓶颈。回想unroll版本减少Interlock_FPU的思路,是通过循环展开给编译器更大的优化空间,让编译器充分利用寄存器,但是编译器比也是有局限的,编译器考虑到通用性,是很难生成针对特定cpu架构特点的汇编实现的(ARM in-order架构的小核上更是如此)。因此下一步的想法就是优化编译器生成的汇编,通过把内层计算逻辑替换为嵌入式汇编,依据架构硬件特性调整指令选择和指令排布,进一步减少pipeline上的依赖和冲突,从而降低Interlock_FPU的数值。
首先,我们对比了PACK版本的mperf数据中的FPU_util和纯算力测试情况下的FPU_util,发现PACK版本的FPU_util相对低了很多,也就是说PACK版本的matmul对于处理器SIMD单元的利用率是有一定提高空间的(下这个判断的一个前提也是考虑到前文已经对matmul访存部分优化得很充分了,并且考虑到内层循环中没有分支判断等复杂逻辑,只是比较存粹的访存和计算指令的interleave)。
其次,我们注意到编译器生成的汇编代码中,数据加载使用的是ldq指令(armv8 isa中的128bit load操作),但是结合上面FPU_util数值较低的观察(坦白了我们有经验知识ARM A55访存能力弱,一个cycle最多load 64bit,store 128bit),我们有理由怀疑ldq指令的应用可能造成pipeline stall。通过查询ARM A55 trm手册,我们发现ldq在a55上需要两个cycle才能issue出去,并且ldq跟fmla不能双发射(注:ARM A55是双发射架构),这就验证了ldq会造成计算和访存指令无法双发射,并导致了PU_util数值的下降。进一步我们发现,ldr,ldx,ins三种指令都可以与fmla双发射,且发射都是1周期,而这三条指令可以组合出ldq等价的功能。因此可以想象,使用ldr,ldx,ins指令组合替换ldq指令,可以提高流水线的满载程度,进而提高性能。
我们用一个小的测试例子来进行验证: 考虑下面两段代码: 优化前,使用ldq指令加载数据,代码如下:
asm volatile(
"fmla v1.4s, v1.4s, v1.s[0]\n"
"ld1 {v0.4s}, [%[b_ptr]]\n"
"fmla v2.4s, v2.4s, v2.s[0]\n"
"ld1 {v7.4s}, [%[b_ptr]]\n"
"fmla v3.4s, v3.4s, v3.s[0]\n"
"fmla v4.4s, v4.4s, v4.s[0]\n"
"fmla v5.4s, v5.4s, v5.s[0]\n"
"fmla v6.4s, v6.4s, v6.s[0]\n"
: [b_ptr] "+r"(b_ptr)
:
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
优化后,将ldq拆分为ldr,ldx,ins指令加载数据,代码如下:
asm volatile(
"fmla v1.4s, v1.4s, v1.s[0]\n"
"ldr d0, [%[b_ptr]]\n"
"fmla v2.4s, v2.4s, v2.s[0]\n"
"ldr x0, [%[b_ptr], #8]\n"
"fmla v3.4s, v3.4s, v3.s[0]\n"
"ins v0.d[1], x0\n"
"fmla v4.4s, v4.4s, v4.s[0]\n"
"ldr d7, [%[b_ptr]]\n"
"fmla v5.4s, v5.4s, v5.s[0]\n"
"ldr x0, [%[b_ptr], #8]\n"
"fmla v6.4s, v6.4s, v6.s[0]\n"
"ins v7.d[1], x0\n"
: [b_ptr] "+r"(b_ptr)
:
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
我们对优化前和优化后的版本进行测试,对分析mperf拿到的数据,看到主要的变化为:
ldq | ldr+ldr+ins |
---|---|
Metric_Load_Port_Util : 0.39650 | Metric_Load_Port_Util : 0.69312 |
Metric_GFLOPs_Use : 5.00572 | Metric_GFLOPs_Use : 7.70664 |
可以看到Metric_Load_Port_Util 和 Metric_GFLOPs_Use 均提升明显,验证了前面的猜想。
因此,在嵌入的汇编代码中,我们应用上面提到的加载指令的替换,测得的mperf性能数据见:ASM_mperf
对比分析PACK和ASM两个版本的mperf数据,可以看到FPU_Util和Metric_Load_Port_Util均显著上升。
PACK | ASM | PACK | ASM | PACK | ASM | PACK | ASM | PACK | ASM |
---|---|---|---|---|---|---|---|---|---|
M=N=K=200 | M=N=K=200 | M=N=K=300 | M=N=K=300 | M=N=K=500 | M=N=K=500 | M=N=K=700 | M=N=K=700 | M=N=K=900 | M=N=K=900 |
Bad_Speculation : 0.29156 | Bad_Speculation : 0.13931 | Bad_Speculation : 0.27964 | Bad_Speculation : 0.10896 | Bad_Speculation : 0.26751 | Bad_Speculation : 0.02394 | Bad_Speculation : 0.24406 | Bad_Speculation : 0.07470 | Bad_Speculation : 0.22907 | Bad_Speculation : 0.06565 |
Branch_Mispredicts : 530.09998 | Branch_Mispredicts : 516.29999 | Branch_Mispredicts : 1718.09998 | Branch_Mispredicts : 1237.50000 | Branch_Mispredicts : 7551.70020 | Branch_Mispredicts : 6101.39990 | Branch_Mispredicts : 22910.50000 | Branch_Mispredicts : 17442.59961 | Branch_Mispredicts : 50927.00000 | Branch_Mispredicts : 37761.50000 |
Load_Cache : 0.01824 | Load_Cache : 0.02975 | Load_Cache : 0.05483 | Load_Cache : 0.10898 | Load_Cache : 0.10329 | Load_Cache : 0.25344 | Load_Cache : 0.20224 | Load_Cache : 0.38846 | Load_Cache : 0.21719 | Load_Cache : 0.42574 |
Interlock_FPU : 0.37414 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.36819 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.34176 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.31210 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.30707 | Interlock_FPU : 0.00000 |
Retiring : 0.30317 | Retiring : 0.79307 | Retiring : 0.28769 | Retiring : 0.74938 | Retiring : 0.26564 | Retiring : 0.64852 | Retiring : 0.23871 | Retiring : 0.50446 | Retiring : 0.23278 | Retiring : 0.47370 |
LD_Retiring : 0.04036 | LD_Retiring : 0.21852 | LD_Retiring : 0.03691 | LD_Retiring : 0.20725 | LD_Retiring : 0.03349 | LD_Retiring : 0.17772 | LD_Retiring : 0.02966 | LD_Retiring : 0.13824 | LD_Retiring : 0.02869 | LD_Retiring : 0.12980 |
ST_Retiring : 0.00510 | ST_Retiring : 0.01946 | ST_Retiring : 0.00493 | ST_Retiring : 0.01859 | ST_Retiring : 0.00279 | ST_Retiring : 0.00998 | ST_Retiring : 0.00241 | ST_Retiring : 0.00750 | ST_Retiring : 0.00230 | ST_Retiring : 0.00690 |
DP_Retiring : 0.02283 | DP_Retiring : 0.03734 | DP_Retiring : 0.02146 | DP_Retiring : 0.03561 | DP_Retiring : 0.01926 | DP_Retiring : 0.02792 | DP_Retiring : 0.01710 | DP_Retiring : 0.02162 | DP_Retiring : 0.01657 | DP_Retiring : 0.02026 |
ASE_Retiring : 0.22917 | ASE_Retiring : 0.42233 | ASE_Retiring : 0.21917 | ASE_Retiring : 0.39544 | ASE_Retiring : 0.20533 | ASE_Retiring : 0.35224 | ASE_Retiring : 0.18532 | ASE_Retiring : 0.27398 | ASE_Retiring : 0.18116 | ASE_Retiring : 0.25727 |
VFP_Retiring : 0.22917 | VFP_Retiring : 0.42233 | VFP_Retiring : 0.21917 | VFP_Retiring : 0.39544 | VFP_Retiring : 0.20533 | VFP_Retiring : 0.35224 | VFP_Retiring : 0.18532 | VFP_Retiring : 0.27398 | VFP_Retiring : 0.18116 | VFP_Retiring : 0.25727 |
Metric_Load_Port_Util : 0.08072 | Metric_Load_Port_Util : 0.43704 | Metric_Load_Port_Util : 0.07381 | Metric_Load_Port_Util : 0.41450 | Metric_Load_Port_Util : 0.06698 | Metric_Load_Port_Util : 0.35545 | Metric_Load_Port_Util : 0.05932 | Metric_Load_Port_Util : 0.27647 | Metric_Load_Port_Util : 0.05737 | Metric_Load_Port_Util : 0.25961 |
Metric_FPU_Util : 0.45834 | Metric_FPU_Util : 0.84466 | Metric_FPU_Util : 0.43834 | Metric_FPU_Util : 0.79088 | Metric_FPU_Util : 0.41067 | Metric_FPU_Util : 0.70447 | Metric_FPU_Util : 0.37064 | Metric_FPU_Util : 0.54795 | Metric_FPU_Util : 0.36232 | Metric_FPU_Util : 0.51453 |
Metric_GFLOPs_Use : 7.27027 | Metric_GFLOPs_Use : 13.45224 | Metric_GFLOPs_Use : 6.96883 | Metric_GFLOPs_Use : 12.57732 | Metric_GFLOPs_Use : 6.63430 | Metric_GFLOPs_Use : 10.50762 | Metric_GFLOPs_Use : 5.88770 | Metric_GFLOPs_Use : 8.73145 | Metric_GFLOPs_Use : 5.75827 | Metric_GFLOPs_Use : 8.13339 |
注意到嵌入汇编代码后在矩阵大小M,N,K <= 300时,GFLOPS性能已经达到峰值算力的90%以上,基本上可以判定较小尺寸的情况下,matmul在ARM A55平台上已经优化到位了。而当M,N,K比较大时,依旧有进一步的优化空间。但是考虑到本文的目的是借助matmul优化来说明mperf可以给性能优化工作带来哪些助益,就不继续大尺寸matmul的优化工作了。
本文以ARM A55平台上的矩阵乘优化为例,详细介绍了如何用mperf分析当前实现的性能表现,找到性能瓶颈,进而确定下一步的优化方向,如此反复迭代,最终取得了接近硬件性能峰值的性能表现。本文各个版本matmul的性能对比如下所示:
- 文中所有试验代码都放置在
mperf/apps/cpu_pmu_analysis
目录下。
M=N=K=100 | M=N=K=200 | M=N=K=300 |
---|---|---|
Frontend_Bound : 0.00319 | Frontend_Bound : 0.00149 | Frontend_Bound : 0.00088 |
Fetch_Latency : 0.00319 | Fetch_Latency : 0.00149 | Fetch_Latency : 0.00088 |
ICache_Misses : 0.00004 | ICache_Misses : 0.00001 | ICache_Misses : 0.00001 |
ITLB_Misses : 0.00000 | ITLB_Misses : 0.00001 | ITLB_Misses : 0.00000 |
Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 |
Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 |
Bad_Speculation : 0.16147 | Bad_Speculation : 0.14928 | Bad_Speculation : 0.13111 |
Branch_Mispredicts : 10112.59961 | Branch_Mispredicts : 40262.80078 | Branch_Mispredicts : 90512.79688 |
Backend_Bound : 0.46695 | Backend_Bound : 0.50441 | Backend_Bound : 0.56425 |
Memory_Bound : 0.04070 | Memory_Bound : 0.08765 | Memory_Bound : 0.18501 |
Load_Bound : 0.04054 | Load_Bound : 0.08667 | Load_Bound : 0.18443 |
Load_DTLB : 0.00002 | Load_DTLB : 0.03964 | Load_DTLB : 0.05109 |
Load_Cache : 0.04006 | Load_Cache : 0.04649 | Load_Cache : 0.13333 |
Store_Bound : 0.00016 | Store_Bound : 0.00098 | Store_Bound : 0.00058 |
Store_TLB : 0.00000 | Store_TLB : 0.00098 | Store_TLB : 0.00058 |
Store_Buffer : 0.00017 | Store_Buffer : 0.00000 | Store_Buffer : 0.00000 |
Core_Bound : 0.42625 | Core_Bound : 0.41676 | Core_Bound : 0.37925 |
Interlock_Bound : 0.41492 | Interlock_Bound : 0.39122 | Interlock_Bound : 0.34547 |
Interlock_AGU : 0.00001 | Interlock_AGU : 0.00000 | Interlock_AGU : 0.00000 |
Interlock_FPU : 0.41489 | Interlock_FPU : 0.39121 | Interlock_FPU : 0.34547 |
Core_Bound_Others : 0.01133 | Core_Bound_Others : 0.02555 | Core_Bound_Others : 0.03378 |
Retiring : 0.36839 | Retiring : 0.34483 | Retiring : 0.30376 |
LD_Retiring : 0.10529 | LD_Retiring : 0.09854 | LD_Retiring : 0.08680 |
ST_Retiring : 0.00055 | ST_Retiring : 0.00026 | ST_Retiring : 0.00015 |
DP_Retiring : 0.10854 | DP_Retiring : 0.10006 | DP_Retiring : 0.08769 |
ASE_Retiring : 0.00000 | ASE_Retiring : 0.00000 | ASE_Retiring : 0.00000 |
VFP_Retiring : 0.10372 | VFP_Retiring : 0.09780 | VFP_Retiring : 0.08637 |
PC_Write_Retiring : 0.05242 | PC_Write_Retiring : 0.04916 | PC_Write_Retiring : 0.04334 |
BR_IMMED_Retiring : 0.05242 | BR_IMMED_Retiring : 0.04916 | BR_IMMED_Retiring : 0.04334 |
BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 |
BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 |
Metric_L1D_Miss_Ratio : 0.05678 | Metric_L1D_Miss_Ratio : 0.02601 | Metric_L1D_Miss_Ratio : 0.06416 |
Metric_L1D_RD_Miss_Ratio : 0.05673 | Metric_L1D_RD_Miss_Ratio : 0.02592 | Metric_L1D_RD_Miss_Ratio : 0.06405 |
Metric_L1D_WR_Miss_Ratio : 0.17102 | Metric_L1D_WR_Miss_Ratio : 0.18698 | Metric_L1D_WR_Miss_Ratio : 0.33719 |
Metric_L2D_Miss_Ratio : 0.00473 | Metric_L2D_Miss_Ratio : 0.14580 | Metric_L2D_Miss_Ratio : 0.23731 |
Metric_L2D_RD_Miss_Ratio : 0.01038 | Metric_L2D_RD_Miss_Ratio : 0.29075 | Metric_L2D_RD_Miss_Ratio : 0.47490 |
Metric_L2D_WR_Miss_Ratio : 0.00116 | Metric_L2D_WR_Miss_Ratio : 0.00014 | Metric_L2D_WR_Miss_Ratio : 0.00004 |
Metric_L3D_Miss_Ratio : 0.00158 | Metric_L3D_Miss_Ratio : 0.00038 | Metric_L3D_Miss_Ratio : 0.00027 |
Metric_L3D_RD_Miss_Ratio : 0.00399 | Metric_L3D_RD_Miss_Ratio : 0.00077 | Metric_L3D_RD_Miss_Ratio : 0.00054 |
Metric_BR_Mispred_Ratio : 0.01000 | Metric_BR_Mispred_Ratio : 0.00501 | Metric_BR_Mispred_Ratio : 0.00334 |
Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 |
Metric_L1D_TLB_Miss_Ratio : 0.00007 | Metric_L1D_TLB_Miss_Ratio : 0.10279 | Metric_L1D_TLB_Miss_Ratio : 0.15008 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00000 |
Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 |
Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 |
Metric_Load_Port_Util : 0.21057 | Metric_Load_Port_Util : 0.19708 | Metric_Load_Port_Util : 0.17360 |
Metric_Store_Port_Util : 0.00110 | Metric_Store_Port_Util : 0.00052 | Metric_Store_Port_Util : 0.00031 |
Metric_FPU_Util : 0.00000 | Metric_FPU_Util : 0.00000 | Metric_FPU_Util : 0.00000 |
Metric_GFLOPs_Use : 0.36511 | Metric_GFLOPs_Use : 0.34685 | Metric_GFLOPs_Use : 0.30557 |
M=N=K=100 | M=N=K=200 | M=N=K=300 | M=N=K=500 | M=N=K=700 | M=N=K=900 |
---|---|---|---|---|---|
Frontend_Bound : 0.00074 | Frontend_Bound : 0.00016 | Frontend_Bound : 0.00010 | Frontend_Bound : 0.00007 | Frontend_Bound : 0.00008 | Frontend_Bound : 0.00006 |
Fetch_Latency : 0.00074 | Fetch_Latency : 0.00016 | Fetch_Latency : 0.00010 | Fetch_Latency : 0.00007 | Fetch_Latency : 0.00008 | Fetch_Latency : 0.00006 |
ICache_Misses : 0.00034 | ICache_Misses : 0.00004 | ICache_Misses : 0.00003 | ICache_Misses : 0.00003 | ICache_Misses : 0.00004 | ICache_Misses : 0.00004 |
ITLB_Misses : 0.00000 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00004 | ITLB_Misses : 0.00001 | ITLB_Misses : 0.00001 |
Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 |
Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 |
Bad_Speculation : 0.47808 | Bad_Speculation : 0.46884 | Bad_Speculation : 0.44958 | Bad_Speculation : 0.43876 | Bad_Speculation : 0.34968 | Bad_Speculation : 0.27817 |
Branch_Mispredicts : 134.60001 | Branch_Mispredicts : 472.39999 | Branch_Mispredicts : 1017.79999 | Branch_Mispredicts : 2919.89990 | Branch_Mispredicts : 5817.79980 | Branch_Mispredicts : 10082.20020 |
Backend_Bound : 0.18936 | Backend_Bound : 0.20947 | Backend_Bound : 0.24190 | Backend_Bound : 0.26918 | Backend_Bound : 0.41795 | Backend_Bound : 0.54684 |
Memory_Bound : 0.04723 | Memory_Bound : 0.07794 | Memory_Bound : 0.10863 | Memory_Bound : 0.14413 | Memory_Bound : 0.31008 | Memory_Bound : 0.48435 |
Load_Bound : 0.04660 | Load_Bound : 0.07781 | Load_Bound : 0.10861 | Load_Bound : 0.14411 | Load_Bound : 0.31003 | Load_Bound : 0.48433 |
Load_DTLB : 0.00056 | Load_DTLB : 0.00293 | Load_DTLB : 0.00382 | Load_DTLB : 0.00629 | Load_DTLB : 0.01087 | Load_DTLB : 0.01226 |
Load_Cache : 0.04502 | Load_Cache : 0.06666 | Load_Cache : 0.09210 | Load_Cache : 0.12851 | Load_Cache : 0.30802 | Load_Cache : 0.45685 |
Store_Bound : 0.00063 | Store_Bound : 0.00013 | Store_Bound : 0.00002 | Store_Bound : 0.00002 | Store_Bound : 0.00005 | Store_Bound : 0.00002 |
Store_TLB : 0.00001 | Store_TLB : 0.00001 | Store_TLB : 0.00001 | Store_TLB : 0.00001 | Store_TLB : 0.00003 | Store_TLB : 0.00002 |
Store_Buffer : 0.00051 | Store_Buffer : 0.00011 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00000 |
Core_Bound : 0.14213 | Core_Bound : 0.13153 | Core_Bound : 0.13327 | Core_Bound : 0.12505 | Core_Bound : 0.10787 | Core_Bound : 0.06249 |
Interlock_Bound : 0.11653 | Interlock_Bound : 0.11316 | Interlock_Bound : 0.11241 | Interlock_Bound : 0.10508 | Interlock_Bound : 0.08437 | Interlock_Bound : 0.06386 |
Interlock_AGU : 0.00033 | Interlock_AGU : 0.00016 | Interlock_AGU : 0.00010 | Interlock_AGU : 0.00006 | Interlock_AGU : 0.00003 | Interlock_AGU : 0.00002 |
Interlock_FPU : 0.11604 | Interlock_FPU : 0.11293 | Interlock_FPU : 0.11227 | Interlock_FPU : 0.10500 | Interlock_FPU : 0.08432 | Interlock_FPU : 0.06384 |
Core_Bound_Others : 0.02560 | Core_Bound_Others : 0.01837 | Core_Bound_Others : 0.02086 | Core_Bound_Others : 0.01997 | Core_Bound_Others : 0.02350 | Core_Bound_Others : -0.00137 |
Retiring : 0.33182 | Retiring : 0.32153 | Retiring : 0.30842 | Retiring : 0.29199 | Retiring : 0.23229 | Retiring : 0.17493 |
LD_Retiring : 0.08541 | LD_Retiring : 0.08371 | LD_Retiring : 0.07969 | LD_Retiring : 0.07575 | LD_Retiring : 0.06023 | LD_Retiring : 0.04534 |
ST_Retiring : 0.04820 | ST_Retiring : 0.04789 | ST_Retiring : 0.04711 | ST_Retiring : 0.04411 | ST_Retiring : 0.03545 | ST_Retiring : 0.02685 |
DP_Retiring : 0.01584 | DP_Retiring : 0.01401 | DP_Retiring : 0.01244 | DP_Retiring : 0.01195 | DP_Retiring : 0.00923 | DP_Retiring : 0.00684 |
ASE_Retiring : 0.17870 | ASE_Retiring : 0.17255 | ASE_Retiring : 0.16616 | ASE_Retiring : 0.15724 | ASE_Retiring : 0.12510 | ASE_Retiring : 0.09421 |
VFP_Retiring : 0.17870 | VFP_Retiring : 0.17255 | VFP_Retiring : 0.16616 | VFP_Retiring : 0.15724 | VFP_Retiring : 0.12510 | VFP_Retiring : 0.09421 |
PC_Write_Retiring : 0.00395 | PC_Write_Retiring : 0.00350 | PC_Write_Retiring : 0.00310 | PC_Write_Retiring : 0.00298 | PC_Write_Retiring : 0.00231 | PC_Write_Retiring : 0.00171 |
BR_IMMED_Retiring : 0.00394 | BR_IMMED_Retiring : 0.00350 | BR_IMMED_Retiring : 0.00310 | BR_IMMED_Retiring : 0.00298 | BR_IMMED_Retiring : 0.00231 | BR_IMMED_Retiring : 0.00171 |
BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 |
BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 |
Metric_L1D_Miss_Ratio : 0.01625 | Metric_L1D_Miss_Ratio : 0.01791 | Metric_L1D_Miss_Ratio : 0.02479 | Metric_L1D_Miss_Ratio : 0.03246 | Metric_L1D_Miss_Ratio : 0.03458 | Metric_L1D_Miss_Ratio : 0.03515 |
Metric_L1D_RD_Miss_Ratio : 0.01692 | Metric_L1D_RD_Miss_Ratio : 0.01863 | Metric_L1D_RD_Miss_Ratio : 0.02567 | Metric_L1D_RD_Miss_Ratio : 0.03369 | Metric_L1D_RD_Miss_Ratio : 0.03581 | Metric_L1D_RD_Miss_Ratio : 0.03639 |
Metric_L1D_WR_Miss_Ratio : 0.00264 | Metric_L1D_WR_Miss_Ratio : 0.00239 | Metric_L1D_WR_Miss_Ratio : 0.00307 | Metric_L1D_WR_Miss_Ratio : 0.00338 | Metric_L1D_WR_Miss_Ratio : 0.00379 | Metric_L1D_WR_Miss_Ratio : 0.00390 |
Metric_L2D_Miss_Ratio : 0.02740 | Metric_L2D_Miss_Ratio : 0.19737 | Metric_L2D_Miss_Ratio : 0.19336 | Metric_L2D_Miss_Ratio : 0.14853 | Metric_L2D_Miss_Ratio : 0.15673 | Metric_L2D_Miss_Ratio : 0.18801 |
Metric_L2D_RD_Miss_Ratio : 0.05446 | Metric_L2D_RD_Miss_Ratio : 0.39807 | Metric_L2D_RD_Miss_Ratio : 0.38924 | Metric_L2D_RD_Miss_Ratio : 0.29803 | Metric_L2D_RD_Miss_Ratio : 0.31396 | Metric_L2D_RD_Miss_Ratio : 0.37706 |
Metric_L2D_WR_Miss_Ratio : 0.00004 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 |
Metric_L3D_Miss_Ratio : 0.00000 | Metric_L3D_Miss_Ratio : 0.00010 | Metric_L3D_Miss_Ratio : 0.00160 | Metric_L3D_Miss_Ratio : 0.02646 | Metric_L3D_Miss_Ratio : 0.18870 | Metric_L3D_Miss_Ratio : 0.23623 |
Metric_L3D_RD_Miss_Ratio : 0.00000 | Metric_L3D_RD_Miss_Ratio : 0.00020 | Metric_L3D_RD_Miss_Ratio : 0.00325 | Metric_L3D_RD_Miss_Ratio : 0.05356 | Metric_L3D_RD_Miss_Ratio : 0.38055 | Metric_L3D_RD_Miss_Ratio : 0.47494 |
Metric_BR_Mispred_Ratio : 0.01048 | Metric_BR_Mispred_Ratio : 0.00500 | Metric_BR_Mispred_Ratio : 0.00346 | Metric_BR_Mispred_Ratio : 0.00211 | Metric_BR_Mispred_Ratio : 0.00158 | Metric_BR_Mispred_Ratio : 0.00131 |
Metric_L1I_TLB_Miss_Ratio : 0.00001 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 |
Metric_L1D_TLB_Miss_Ratio : 0.00087 | Metric_L1D_TLB_Miss_Ratio : 0.00432 | Metric_L1D_TLB_Miss_Ratio : 0.00584 | Metric_L1D_TLB_Miss_Ratio : 0.00984 | Metric_L1D_TLB_Miss_Ratio : 0.01323 | Metric_L1D_TLB_Miss_Ratio : 0.01621 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00001 | Metric_L2_TLB_Miss_Ratio : 0.00005 | Metric_L2_TLB_Miss_Ratio : 0.00035 | Metric_L2_TLB_Miss_Ratio : 0.02917 | Metric_L2_TLB_Miss_Ratio : 0.04803 |
Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 |
Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00039 | Metric_DTLB_Table_Walk_Ratio : 0.00078 |
Metric_Load_Port_Util : 0.17082 | Metric_Load_Port_Util : 0.16742 | Metric_Load_Port_Util : 0.15939 | Metric_Load_Port_Util : 0.15151 | Metric_Load_Port_Util : 0.12046 | Metric_Load_Port_Util : 0.09069 |
Metric_Store_Port_Util : 0.09640 | Metric_Store_Port_Util : 0.09578 | Metric_Store_Port_Util : 0.09422 | Metric_Store_Port_Util : 0.08822 | Metric_Store_Port_Util : 0.07090 | Metric_Store_Port_Util : 0.05370 |
Metric_FPU_Util : 0.35740 | Metric_FPU_Util : 0.34510 | Metric_FPU_Util : 0.33232 | Metric_FPU_Util : 0.31449 | Metric_FPU_Util : 0.25020 | Metric_FPU_Util : 0.18842 |
Metric_GFLOPs_Use : 5.73161 | Metric_GFLOPs_Use : 5.50208 | Metric_GFLOPs_Use : 5.24582 | Metric_GFLOPs_Use : 4.97877 | Metric_GFLOPs_Use : 3.95044 | Metric_GFLOPs_Use : 3.03964 |
M=N=K=100 | M=N=K=200 | M=N=K=300 | M=N=K=500 | M=N=K=700 | M=N=K=900 |
---|---|---|---|---|---|
Frontend_Bound : 0.00050 | Frontend_Bound : 0.00014 | Frontend_Bound : 0.00013 | Frontend_Bound : 0.00013 | Frontend_Bound : 0.00016 | Frontend_Bound : 0.00014 |
Fetch_Latency : 0.00050 | Fetch_Latency : 0.00014 | Fetch_Latency : 0.00013 | Fetch_Latency : 0.00013 | Fetch_Latency : 0.00016 | Fetch_Latency : 0.00014 |
ICache_Misses : 0.00028 | ICache_Misses : 0.00004 | ICache_Misses : 0.00003 | ICache_Misses : 0.00005 | ICache_Misses : 0.00004 | ICache_Misses : 0.00003 |
ITLB_Misses : 0.00001 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00004 | ITLB_Misses : 0.00002 | ITLB_Misses : 0.00001 |
Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 |
Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 |
Bad_Speculation : 0.48119 | Bad_Speculation : 0.46947 | Bad_Speculation : 0.46177 | Bad_Speculation : 0.42173 | Bad_Speculation : 0.39518 | Bad_Speculation : 0.37718 |
Branch_Mispredicts : 134.60001 | Branch_Mispredicts : 471.60001 | Branch_Mispredicts : 1535.69995 | Branch_Mispredicts : 7051.50000 | Branch_Mispredicts : 20853.69922 | Branch_Mispredicts : 46702.60156 |
Backend_Bound : 0.18770 | Backend_Bound : 0.20837 | Backend_Bound : 0.22868 | Backend_Bound : 0.28475 | Backend_Bound : 0.33877 | Backend_Bound : 0.36801 |
Memory_Bound : 0.05038 | Memory_Bound : 0.07006 | Memory_Bound : 0.09758 | Memory_Bound : 0.14764 | Memory_Bound : 0.23551 | Memory_Bound : 0.25875 |
Load_Bound : 0.04975 | Load_Bound : 0.06994 | Load_Bound : 0.09756 | Load_Bound : 0.14762 | Load_Bound : 0.23547 | Load_Bound : 0.25870 |
Load_DTLB : 0.00056 | Load_DTLB : 0.00291 | Load_DTLB : 0.00397 | Load_DTLB : 0.00647 | Load_DTLB : 0.01252 | Load_DTLB : 0.02023 |
Load_Cache : 0.04751 | Load_Cache : 0.06600 | Load_Cache : 0.08761 | Load_Cache : 0.13781 | Load_Cache : 0.21025 | Load_Cache : 0.23244 |
Store_Bound : 0.00063 | Store_Bound : 0.00012 | Store_Bound : 0.00002 | Store_Bound : 0.00002 | Store_Bound : 0.00004 | Store_Bound : 0.00005 |
Store_TLB : 0.00001 | Store_TLB : 0.00001 | Store_TLB : 0.00001 | Store_TLB : 0.00002 | Store_TLB : 0.00010 | Store_TLB : 0.00004 |
Store_Buffer : 0.00060 | Store_Buffer : 0.00011 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 |
Core_Bound : 0.13732 | Core_Bound : 0.13830 | Core_Bound : 0.13109 | Core_Bound : 0.13711 | Core_Bound : 0.10326 | Core_Bound : 0.10926 |
Interlock_Bound : 0.11610 | Interlock_Bound : 0.11333 | Interlock_Bound : 0.11263 | Interlock_Bound : 0.10552 | Interlock_Bound : 0.09648 | Interlock_Bound : 0.09286 |
Interlock_AGU : 0.00033 | Interlock_AGU : 0.00016 | Interlock_AGU : 0.00020 | Interlock_AGU : 0.00011 | Interlock_AGU : 0.00011 | Interlock_AGU : 0.00011 |
Interlock_FPU : 0.11562 | Interlock_FPU : 0.11310 | Interlock_FPU : 0.11235 | Interlock_FPU : 0.10536 | Interlock_FPU : 0.09633 | Interlock_FPU : 0.09271 |
Core_Bound_Others : 0.02122 | Core_Bound_Others : 0.02498 | Core_Bound_Others : 0.01846 | Core_Bound_Others : 0.03159 | Core_Bound_Others : 0.00678 | Core_Bound_Others : 0.01639 |
Retiring : 0.33061 | Retiring : 0.32202 | Retiring : 0.30943 | Retiring : 0.29339 | Retiring : 0.26590 | Retiring : 0.25467 |
LD_Retiring : 0.08509 | LD_Retiring : 0.08384 | LD_Retiring : 0.07989 | LD_Retiring : 0.07608 | LD_Retiring : 0.06889 | LD_Retiring : 0.06596 |
ST_Retiring : 0.04802 | ST_Retiring : 0.04796 | ST_Retiring : 0.04731 | ST_Retiring : 0.04436 | ST_Retiring : 0.04063 | ST_Retiring : 0.03914 |
DP_Retiring : 0.01579 | DP_Retiring : 0.01404 | DP_Retiring : 0.01267 | DP_Retiring : 0.01211 | DP_Retiring : 0.01071 | DP_Retiring : 0.01011 |
ASE_Retiring : 0.17804 | ASE_Retiring : 0.17281 | ASE_Retiring : 0.16650 | ASE_Retiring : 0.15789 | ASE_Retiring : 0.14306 | ASE_Retiring : 0.13700 |
VFP_Retiring : 0.17804 | VFP_Retiring : 0.17281 | VFP_Retiring : 0.16650 | VFP_Retiring : 0.15789 | VFP_Retiring : 0.14306 | VFP_Retiring : 0.13700 |
PC_Write_Retiring : 0.00393 | PC_Write_Retiring : 0.00350 | PC_Write_Retiring : 0.00315 | PC_Write_Retiring : 0.00302 | PC_Write_Retiring : 0.00266 | PC_Write_Retiring : 0.00251 |
BR_IMMED_Retiring : 0.00393 | BR_IMMED_Retiring : 0.00350 | BR_IMMED_Retiring : 0.00314 | BR_IMMED_Retiring : 0.00301 | BR_IMMED_Retiring : 0.00266 | BR_IMMED_Retiring : 0.00251 |
BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 |
BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 |
Metric_L1D_Miss_Ratio : 0.01534 | Metric_L1D_Miss_Ratio : 0.01732 | Metric_L1D_Miss_Ratio : 0.02081 | Metric_L1D_Miss_Ratio : 0.02163 | Metric_L1D_Miss_Ratio : 0.01878 | Metric_L1D_Miss_Ratio : 0.02113 |
Metric_L1D_RD_Miss_Ratio : 0.01645 | Metric_L1D_RD_Miss_Ratio : 0.01864 | Metric_L1D_RD_Miss_Ratio : 0.02260 | Metric_L1D_RD_Miss_Ratio : 0.02330 | Metric_L1D_RD_Miss_Ratio : 0.02030 | Metric_L1D_RD_Miss_Ratio : 0.02284 |
Metric_L1D_WR_Miss_Ratio : 0.00189 | Metric_L1D_WR_Miss_Ratio : 0.00186 | Metric_L1D_WR_Miss_Ratio : 0.00171 | Metric_L1D_WR_Miss_Ratio : 0.00194 | Metric_L1D_WR_Miss_Ratio : 0.00169 | Metric_L1D_WR_Miss_Ratio : 0.00189 |
Metric_L2D_Miss_Ratio : 0.03201 | Metric_L2D_Miss_Ratio : 0.19252 | Metric_L2D_Miss_Ratio : 0.21329 | Metric_L2D_Miss_Ratio : 0.23120 | Metric_L2D_Miss_Ratio : 0.26215 | Metric_L2D_Miss_Ratio : 0.23144 |
Metric_L2D_RD_Miss_Ratio : 0.06368 | Metric_L2D_RD_Miss_Ratio : 0.38713 | Metric_L2D_RD_Miss_Ratio : 0.42980 | Metric_L2D_RD_Miss_Ratio : 0.46448 | Metric_L2D_RD_Miss_Ratio : 0.52642 | Metric_L2D_RD_Miss_Ratio : 0.46396 |
Metric_L2D_WR_Miss_Ratio : 0.00006 | Metric_L2D_WR_Miss_Ratio : 0.00001 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 | Metric_L2D_WR_Miss_Ratio : 0.00000 |
Metric_L3D_Miss_Ratio : 0.00041 | Metric_L3D_Miss_Ratio : 0.00010 | Metric_L3D_Miss_Ratio : 0.00089 | Metric_L3D_Miss_Ratio : 0.04055 | Metric_L3D_Miss_Ratio : 0.05405 | Metric_L3D_Miss_Ratio : 0.05183 |
Metric_L3D_RD_Miss_Ratio : 0.00096 | Metric_L3D_RD_Miss_Ratio : 0.00021 | Metric_L3D_RD_Miss_Ratio : 0.00180 | Metric_L3D_RD_Miss_Ratio : 0.08196 | Metric_L3D_RD_Miss_Ratio : 0.10890 | Metric_L3D_RD_Miss_Ratio : 0.10425 |
Metric_BR_Mispred_Ratio : 0.01047 | Metric_BR_Mispred_Ratio : 0.00499 | Metric_BR_Mispred_Ratio : 0.00515 | Metric_BR_Mispred_Ratio : 0.00506 | Metric_BR_Mispred_Ratio : 0.00559 | Metric_BR_Mispred_Ratio : 0.00598 |
Metric_L1I_TLB_Miss_Ratio : 0.00001 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 |
Metric_L1D_TLB_Miss_Ratio : 0.00084 | Metric_L1D_TLB_Miss_Ratio : 0.00414 | Metric_L1D_TLB_Miss_Ratio : 0.00577 | Metric_L1D_TLB_Miss_Ratio : 0.00980 | Metric_L1D_TLB_Miss_Ratio : 0.01345 | Metric_L1D_TLB_Miss_Ratio : 0.01641 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00001 | Metric_L2_TLB_Miss_Ratio : 0.00002 | Metric_L2_TLB_Miss_Ratio : 0.00049 | Metric_L2_TLB_Miss_Ratio : 0.02613 | Metric_L2_TLB_Miss_Ratio : 0.06261 |
Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 |
Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00035 | Metric_DTLB_Table_Walk_Ratio : 0.00103 |
Metric_Load_Port_Util : 0.17019 | Metric_Load_Port_Util : 0.16767 | Metric_Load_Port_Util : 0.15977 | Metric_Load_Port_Util : 0.15216 | Metric_Load_Port_Util : 0.13779 | Metric_Load_Port_Util : 0.13191 |
Metric_Store_Port_Util : 0.09605 | Metric_Store_Port_Util : 0.09592 | Metric_Store_Port_Util : 0.09462 | Metric_Store_Port_Util : 0.08872 | Metric_Store_Port_Util : 0.08126 | Metric_Store_Port_Util : 0.07829 |
Metric_FPU_Util : 0.35609 | Metric_FPU_Util : 0.34562 | Metric_FPU_Util : 0.33301 | Metric_FPU_Util : 0.31577 | Metric_FPU_Util : 0.28611 | Metric_FPU_Util : 0.27400 |
Metric_GFLOPs_Use : 5.69725 | Metric_GFLOPs_Use : 5.51211 | Metric_GFLOPs_Use : 5.29374 | Metric_GFLOPs_Use : 4.99903 | Metric_GFLOPs_Use : 4.53463 | Metric_GFLOPs_Use : 4.37174 |
M=N=K=100 | M=N=K=200 | M=N=K=300 | M=N=K=500 | M=N=K=700 | M=N=K=900 |
---|---|---|---|---|---|
Frontend_Bound : 0.00084 | Frontend_Bound : 0.00033 | Frontend_Bound : 0.00035 | Frontend_Bound : 0.00036 | Frontend_Bound : 0.00033 | Frontend_Bound : 0.00033 |
Fetch_Latency : 0.00084 | Fetch_Latency : 0.00033 | Fetch_Latency : 0.00035 | Fetch_Latency : 0.00036 | Fetch_Latency : 0.00033 | Fetch_Latency : 0.00033 |
ICache_Misses : 0.00009 | ICache_Misses : 0.00006 | ICache_Misses : 0.00012 | ICache_Misses : 0.00010 | ICache_Misses : 0.00008 | ICache_Misses : 0.00008 |
ITLB_Misses : 0.00001 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00013 | ITLB_Misses : 0.00003 | ITLB_Misses : 0.00002 | ITLB_Misses : 0.00002 |
Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 |
Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 |
Bad_Speculation : 0.29067 | Bad_Speculation : 0.29156 | Bad_Speculation : 0.27964 | Bad_Speculation : 0.26751 | Bad_Speculation : 0.24406 | Bad_Speculation : 0.22907 |
Branch_Mispredicts : 166.50000 | Branch_Mispredicts : 530.09998 | Branch_Mispredicts : 1718.09998 | Branch_Mispredicts : 7551.70020 | Branch_Mispredicts : 22910.50000 | Branch_Mispredicts : 50927.00000 |
Backend_Bound : 0.39938 | Backend_Bound : 0.40494 | Backend_Bound : 0.43232 | Backend_Bound : 0.46649 | Backend_Bound : 0.51691 | Backend_Bound : 0.53782 |
Memory_Bound : 0.03465 | Memory_Bound : 0.02105 | Memory_Bound : 0.05301 | Memory_Bound : 0.12115 | Memory_Bound : 0.20594 | Memory_Bound : 0.22456 |
Load_Bound : 0.03365 | Load_Bound : 0.02057 | Load_Bound : 0.05282 | Load_Bound : 0.12086 | Load_Bound : 0.20543 | Load_Bound : 0.22408 |
Load_DTLB : 0.00052 | Load_DTLB : 0.00052 | Load_DTLB : 0.00066 | Load_DTLB : 0.00105 | Load_DTLB : 0.00245 | Load_DTLB : 0.00548 |
Load_Cache : 0.02941 | Load_Cache : 0.01824 | Load_Cache : 0.05483 | Load_Cache : 0.10329 | Load_Cache : 0.20224 | Load_Cache : 0.21719 |
Store_Bound : 0.00100 | Store_Bound : 0.00048 | Store_Bound : 0.00020 | Store_Bound : 0.00029 | Store_Bound : 0.00051 | Store_Bound : 0.00048 |
Store_TLB : 0.00004 | Store_TLB : 0.00003 | Store_TLB : 0.00003 | Store_TLB : 0.00007 | Store_TLB : 0.00010 | Store_TLB : 0.00016 |
Store_Buffer : 0.00017 | Store_Buffer : 0.00006 | Store_Buffer : 0.00001 | Store_Buffer : 0.00001 | Store_Buffer : 0.00000 | Store_Buffer : 0.00001 |
Core_Bound : 0.36474 | Core_Bound : 0.38389 | Core_Bound : 0.37930 | Core_Bound : 0.34534 | Core_Bound : 0.31097 | Core_Bound : 0.31327 |
Interlock_Bound : 0.35229 | Interlock_Bound : 0.37519 | Interlock_Bound : 0.36953 | Interlock_Bound : 0.34252 | Interlock_Bound : 0.31283 | Interlock_Bound : 0.30781 |
Interlock_AGU : 0.00153 | Interlock_AGU : 0.00081 | Interlock_AGU : 0.00102 | Interlock_AGU : 0.00058 | Interlock_AGU : 0.00056 | Interlock_AGU : 0.00057 |
Interlock_FPU : 0.35022 | Interlock_FPU : 0.37414 | Interlock_FPU : 0.36819 | Interlock_FPU : 0.34176 | Interlock_FPU : 0.31210 | Interlock_FPU : 0.30707 |
Core_Bound_Others : 0.01244 | Core_Bound_Others : 0.00869 | Core_Bound_Others : 0.00978 | Core_Bound_Others : 0.00282 | Core_Bound_Others : -0.00185 | Core_Bound_Others : 0.00546 |
Retiring : 0.30911 | Retiring : 0.30317 | Retiring : 0.28769 | Retiring : 0.26564 | Retiring : 0.23871 | Retiring : 0.23278 |
LD_Retiring : 0.04459 | LD_Retiring : 0.04036 | LD_Retiring : 0.03691 | LD_Retiring : 0.03349 | LD_Retiring : 0.02966 | LD_Retiring : 0.02869 |
ST_Retiring : 0.00984 | ST_Retiring : 0.00510 | ST_Retiring : 0.00493 | ST_Retiring : 0.00279 | ST_Retiring : 0.00241 | ST_Retiring : 0.00230 |
DP_Retiring : 0.02618 | DP_Retiring : 0.02283 | DP_Retiring : 0.02146 | DP_Retiring : 0.01926 | DP_Retiring : 0.01710 | DP_Retiring : 0.01657 |
ASE_Retiring : 0.22220 | ASE_Retiring : 0.22917 | ASE_Retiring : 0.21917 | ASE_Retiring : 0.20533 | ASE_Retiring : 0.18532 | ASE_Retiring : 0.18116 |
VFP_Retiring : 0.22220 | VFP_Retiring : 0.22917 | VFP_Retiring : 0.21917 | VFP_Retiring : 0.20533 | VFP_Retiring : 0.18532 | VFP_Retiring : 0.18116 |
PC_Write_Retiring : 0.00675 | PC_Write_Retiring : 0.00592 | PC_Write_Retiring : 0.00538 | PC_Write_Retiring : 0.00488 | PC_Write_Retiring : 0.00430 | PC_Write_Retiring : 0.00414 |
BR_IMMED_Retiring : 0.00674 | BR_IMMED_Retiring : 0.00592 | BR_IMMED_Retiring : 0.00537 | BR_IMMED_Retiring : 0.00487 | BR_IMMED_Retiring : 0.00429 | BR_IMMED_Retiring : 0.00414 |
BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 |
BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 |
Metric_L1D_Miss_Ratio : 0.02724 | Metric_L1D_Miss_Ratio : 0.01994 | Metric_L1D_Miss_Ratio : 0.02942 | Metric_L1D_Miss_Ratio : 0.02552 | Metric_L1D_Miss_Ratio : 0.02491 | Metric_L1D_Miss_Ratio : 0.02444 |
Metric_L1D_RD_Miss_Ratio : 0.02309 | Metric_L1D_RD_Miss_Ratio : 0.01799 | Metric_L1D_RD_Miss_Ratio : 0.02617 | Metric_L1D_RD_Miss_Ratio : 0.02342 | Metric_L1D_RD_Miss_Ratio : 0.02275 | Metric_L1D_RD_Miss_Ratio : 0.02241 |
Metric_L1D_WR_Miss_Ratio : 0.27167 | Metric_L1D_WR_Miss_Ratio : 0.27029 | Metric_L1D_WR_Miss_Ratio : 0.28716 | Metric_L1D_WR_Miss_Ratio : 0.28674 | Metric_L1D_WR_Miss_Ratio : 0.29377 | Metric_L1D_WR_Miss_Ratio : 0.27893 |
Metric_L2D_Miss_Ratio : 0.10546 | Metric_L2D_Miss_Ratio : 0.28792 | Metric_L2D_Miss_Ratio : 0.31292 | Metric_L2D_Miss_Ratio : 0.34867 | Metric_L2D_Miss_Ratio : 0.35318 | Metric_L2D_Miss_Ratio : 0.34909 |
Metric_L2D_RD_Miss_Ratio : 0.22318 | Metric_L2D_RD_Miss_Ratio : 0.59666 | Metric_L2D_RD_Miss_Ratio : 0.63335 | Metric_L2D_RD_Miss_Ratio : 0.70160 | Metric_L2D_RD_Miss_Ratio : 0.70975 | Metric_L2D_RD_Miss_Ratio : 0.70086 |
Metric_L2D_WR_Miss_Ratio : 0.00763 | Metric_L2D_WR_Miss_Ratio : 0.00597 | Metric_L2D_WR_Miss_Ratio : 0.00049 | Metric_L2D_WR_Miss_Ratio : 0.00005 | Metric_L2D_WR_Miss_Ratio : 0.00006 | Metric_L2D_WR_Miss_Ratio : 0.00021 |
Metric_L3D_Miss_Ratio : 0.00000 | Metric_L3D_Miss_Ratio : 0.00004 | Metric_L3D_Miss_Ratio : 0.03019 | Metric_L3D_Miss_Ratio : 0.05627 | Metric_L3D_Miss_Ratio : 0.05840 | Metric_L3D_Miss_Ratio : 0.06148 |
Metric_L3D_RD_Miss_Ratio : 0.00000 | Metric_L3D_RD_Miss_Ratio : 0.00007 | Metric_L3D_RD_Miss_Ratio : 0.06132 | Metric_L3D_RD_Miss_Ratio : 0.11355 | Metric_L3D_RD_Miss_Ratio : 0.11756 | Metric_L3D_RD_Miss_Ratio : 0.12363 |
Metric_BR_Mispred_Ratio : 0.01086 | Metric_BR_Mispred_Ratio : 0.00510 | Metric_BR_Mispred_Ratio : 0.00516 | Metric_BR_Mispred_Ratio : 0.00507 | Metric_BR_Mispred_Ratio : 0.00574 | Metric_BR_Mispred_Ratio : 0.00609 |
Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 |
Metric_L1D_TLB_Miss_Ratio : 0.00222 | Metric_L1D_TLB_Miss_Ratio : 0.00231 | Metric_L1D_TLB_Miss_Ratio : 0.00293 | Metric_L1D_TLB_Miss_Ratio : 0.00301 | Metric_L1D_TLB_Miss_Ratio : 0.00385 | Metric_L1D_TLB_Miss_Ratio : 0.00481 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00049 | Metric_L2_TLB_Miss_Ratio : 0.00123 | Metric_L2_TLB_Miss_Ratio : 0.01338 | Metric_L2_TLB_Miss_Ratio : 0.07775 | Metric_L2_TLB_Miss_Ratio : 0.27862 |
Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 |
Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00006 | Metric_DTLB_Table_Walk_Ratio : 0.00043 | Metric_DTLB_Table_Walk_Ratio : 0.00170 |
Metric_Load_Port_Util : 0.08919 | Metric_Load_Port_Util : 0.08072 | Metric_Load_Port_Util : 0.07381 | Metric_Load_Port_Util : 0.06698 | Metric_Load_Port_Util : 0.05932 | Metric_Load_Port_Util : 0.05737 |
Metric_Store_Port_Util : 0.01968 | Metric_Store_Port_Util : 0.01020 | Metric_Store_Port_Util : 0.00987 | Metric_Store_Port_Util : 0.00558 | Metric_Store_Port_Util : 0.00482 | Metric_Store_Port_Util : 0.00460 |
Metric_FPU_Util : 0.44440 | Metric_FPU_Util : 0.45834 | Metric_FPU_Util : 0.43834 | Metric_FPU_Util : 0.41067 | Metric_FPU_Util : 0.37064 | Metric_FPU_Util : 0.36232 |
Metric_GFLOPs_Use : 6.73893 | Metric_GFLOPs_Use : 7.27027 | Metric_GFLOPs_Use : 6.96883 | Metric_GFLOPs_Use : 6.63430 | Metric_GFLOPs_Use : 5.88770 | Metric_GFLOPs_Use : 5.75827 |
M=N=K=100 | M=N=K=200 | M=N=K=300 | M=N=K=500 | M=N=K=700 | M=N=K=900 |
---|---|---|---|---|---|
max_err:0.000000 | max_err:0.000000 | max_err:0.000000 | max_err:0.000000 | max_err:0.000000 | max_err:0.000000 |
TAM STATIS RESULTS: | TAM STATIS RESULTS: | TAM STATIS RESULTS: | TAM STATIS RESULTS: | TAM STATIS RESULTS: | TAM STATIS RESULTS: |
Frontend_Bound : 0.00152 | Frontend_Bound : 0.00077 | Frontend_Bound : 0.00066 | Frontend_Bound : 0.00102 | Frontend_Bound : 0.00091 | Frontend_Bound : 0.00071 |
Fetch_Latency : 0.00152 | Fetch_Latency : 0.00077 | Fetch_Latency : 0.00066 | Fetch_Latency : 0.00102 | Fetch_Latency : 0.00091 | Fetch_Latency : 0.00071 |
ICache_Misses : 0.00044 | ICache_Misses : 0.00016 | ICache_Misses : 0.00027 | ICache_Misses : 0.00065 | ICache_Misses : 0.00055 | ICache_Misses : 0.00037 |
ITLB_Misses : 0.00001 | ITLB_Misses : 0.00001 | ITLB_Misses : 0.00000 | ITLB_Misses : 0.00009 | ITLB_Misses : 0.00003 | ITLB_Misses : 0.00004 |
Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 | Predecode_Error : 0.00000 |
Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 | Fetch_Bandwidth : 0.00000 |
Bad_Speculation : 0.25192 | Bad_Speculation : 0.13931 | Bad_Speculation : 0.10896 | Bad_Speculation : 0.02394 | Bad_Speculation : 0.07470 | Bad_Speculation : 0.06565 |
Branch_Mispredicts : 53.00000 | Branch_Mispredicts : 516.29999 | Branch_Mispredicts : 1237.50000 | Branch_Mispredicts : 6101.39990 | Branch_Mispredicts : 17442.59961 | Branch_Mispredicts : 37761.50000 |
Backend_Bound : 0.09611 | Backend_Bound : 0.06685 | Backend_Bound : 0.14100 | Backend_Bound : 0.32652 | Backend_Bound : 0.41993 | Backend_Bound : 0.45994 |
Memory_Bound : 0.06672 | Memory_Bound : 0.04390 | Memory_Bound : 0.12568 | Memory_Bound : 0.25850 | Memory_Bound : 0.40588 | Memory_Bound : 0.45154 |
Load_Bound : 0.05526 | Load_Bound : 0.03654 | Load_Bound : 0.12134 | Load_Bound : 0.25507 | Load_Bound : 0.40223 | Load_Bound : 0.44639 |
Load_DTLB : 0.00095 | Load_DTLB : 0.00132 | Load_DTLB : 0.00173 | Load_DTLB : 0.00268 | Load_DTLB : 0.00493 | Load_DTLB : 0.01282 |
Load_Cache : 0.04603 | Load_Cache : 0.02975 | Load_Cache : 0.10898 | Load_Cache : 0.25344 | Load_Cache : 0.38846 | Load_Cache : 0.42574 |
Store_Bound : 0.01146 | Store_Bound : 0.00736 | Store_Bound : 0.00434 | Store_Bound : 0.00343 | Store_Bound : 0.00365 | Store_Bound : 0.00515 |
Store_TLB : 0.00053 | Store_TLB : 0.00058 | Store_TLB : 0.00053 | Store_TLB : 0.00086 | Store_TLB : 0.00143 | Store_TLB : 0.00289 |
Store_Buffer : 0.00811 | Store_Buffer : 0.00488 | Store_Buffer : 0.00318 | Store_Buffer : 0.00185 | Store_Buffer : 0.00106 | Store_Buffer : 0.00071 |
Core_Bound : 0.02938 | Core_Bound : 0.02295 | Core_Bound : 0.01532 | Core_Bound : 0.06802 | Core_Bound : 0.01405 | Core_Bound : 0.00839 |
Interlock_Bound : 0.00353 | Interlock_Bound : 0.00220 | Interlock_Bound : 0.00274 | Interlock_Bound : 0.00144 | Interlock_Bound : 0.00120 | Interlock_Bound : 0.00117 |
Interlock_AGU : 0.00326 | Interlock_AGU : 0.00213 | Interlock_AGU : 0.00264 | Interlock_AGU : 0.00141 | Interlock_AGU : 0.00118 | Interlock_AGU : 0.00115 |
Interlock_FPU : 0.00000 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.00000 | Interlock_FPU : 0.00000 |
Core_Bound_Others : 0.02585 | Core_Bound_Others : 0.02075 | Core_Bound_Others : 0.01258 | Core_Bound_Others : 0.06657 | Core_Bound_Others : 0.01285 | Core_Bound_Others : 0.00722 |
Retiring : 0.65045 | Retiring : 0.79307 | Retiring : 0.74938 | Retiring : 0.64852 | Retiring : 0.50446 | Retiring : 0.47370 |
LD_Retiring : 0.18266 | LD_Retiring : 0.21852 | LD_Retiring : 0.20725 | LD_Retiring : 0.17772 | LD_Retiring : 0.13824 | LD_Retiring : 0.12980 |
ST_Retiring : 0.02936 | ST_Retiring : 0.01946 | ST_Retiring : 0.01859 | ST_Retiring : 0.00998 | ST_Retiring : 0.00750 | ST_Retiring : 0.00690 |
DP_Retiring : 0.03776 | DP_Retiring : 0.03734 | DP_Retiring : 0.03561 | DP_Retiring : 0.02792 | DP_Retiring : 0.02162 | DP_Retiring : 0.02026 |
ASE_Retiring : 0.32465 | ASE_Retiring : 0.42233 | ASE_Retiring : 0.39544 | ASE_Retiring : 0.35224 | ASE_Retiring : 0.27398 | ASE_Retiring : 0.25727 |
VFP_Retiring : 0.32465 | VFP_Retiring : 0.42233 | VFP_Retiring : 0.39544 | VFP_Retiring : 0.35224 | VFP_Retiring : 0.27398 | VFP_Retiring : 0.25727 |
PC_Write_Retiring : 0.01224 | PC_Write_Retiring : 0.01246 | PC_Write_Retiring : 0.01099 | PC_Write_Retiring : 0.00911 | PC_Write_Retiring : 0.00689 | PC_Write_Retiring : 0.00636 |
BR_IMMED_Retiring : 0.01234 | BR_IMMED_Retiring : 0.01254 | BR_IMMED_Retiring : 0.01115 | BR_IMMED_Retiring : 0.00920 | BR_IMMED_Retiring : 0.00697 | BR_IMMED_Retiring : 0.00644 |
BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 | BR_RETURN_Retiring : 0.00000 |
BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 | BR_INDIRECT_Retiring : 0.00000 |
Metric_L1D_Miss_Ratio : 0.01772 | Metric_L1D_Miss_Ratio : 0.00919 | Metric_L1D_Miss_Ratio : 0.01592 | Metric_L1D_Miss_Ratio : 0.01209 | Metric_L1D_Miss_Ratio : 0.01184 | Metric_L1D_Miss_Ratio : 0.01207 |
Metric_L1D_RD_Miss_Ratio : 0.00917 | Metric_L1D_RD_Miss_Ratio : 0.00428 | Metric_L1D_RD_Miss_Ratio : 0.01234 | Metric_L1D_RD_Miss_Ratio : 0.00928 | Metric_L1D_RD_Miss_Ratio : 0.00943 | Metric_L1D_RD_Miss_Ratio : 0.00977 |
Metric_L1D_WR_Miss_Ratio : 0.47821 | Metric_L1D_WR_Miss_Ratio : 0.53998 | Metric_L1D_WR_Miss_Ratio : 0.27725 | Metric_L1D_WR_Miss_Ratio : 0.33759 | Metric_L1D_WR_Miss_Ratio : 0.28778 | Metric_L1D_WR_Miss_Ratio : 0.27197 |
Metric_L2D_Miss_Ratio : 0.10307 | Metric_L2D_Miss_Ratio : 0.26791 | Metric_L2D_Miss_Ratio : 0.30925 | Metric_L2D_Miss_Ratio : 0.33934 | Metric_L2D_Miss_Ratio : 0.34121 | Metric_L2D_Miss_Ratio : 0.33642 |
Metric_L2D_RD_Miss_Ratio : 0.21359 | Metric_L2D_RD_Miss_Ratio : 0.55121 | Metric_L2D_RD_Miss_Ratio : 0.62478 | Metric_L2D_RD_Miss_Ratio : 0.68300 | Metric_L2D_RD_Miss_Ratio : 0.68550 | Metric_L2D_RD_Miss_Ratio : 0.67536 |
Metric_L2D_WR_Miss_Ratio : 0.00678 | Metric_L2D_WR_Miss_Ratio : 0.00421 | Metric_L2D_WR_Miss_Ratio : 0.00030 | Metric_L2D_WR_Miss_Ratio : 0.00004 | Metric_L2D_WR_Miss_Ratio : 0.00003 | Metric_L2D_WR_Miss_Ratio : 0.00006 |
Metric_L3D_Miss_Ratio : 0.00015 | Metric_L3D_Miss_Ratio : 0.00014 | Metric_L3D_Miss_Ratio : 0.01822 | Metric_L3D_Miss_Ratio : 0.05453 | Metric_L3D_Miss_Ratio : 0.05917 | Metric_L3D_Miss_Ratio : 0.06384 |
Metric_L3D_RD_Miss_Ratio : 0.00034 | Metric_L3D_RD_Miss_Ratio : 0.00030 | Metric_L3D_RD_Miss_Ratio : 0.03700 | Metric_L3D_RD_Miss_Ratio : 0.11009 | Metric_L3D_RD_Miss_Ratio : 0.11916 | Metric_L3D_RD_Miss_Ratio : 0.12840 |
Metric_BR_Mispred_Ratio : 0.00552 | Metric_BR_Mispred_Ratio : 0.00864 | Metric_BR_Mispred_Ratio : 0.00648 | Metric_BR_Mispred_Ratio : 0.00745 | Metric_BR_Mispred_Ratio : 0.00798 | Metric_BR_Mispred_Ratio : 0.00826 |
Metric_L1I_TLB_Miss_Ratio : 0.00001 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 | Metric_L1I_TLB_Miss_Ratio : 0.00000 |
Metric_L1D_TLB_Miss_Ratio : 0.00243 | Metric_L1D_TLB_Miss_Ratio : 0.00254 | Metric_L1D_TLB_Miss_Ratio : 0.00320 | Metric_L1D_TLB_Miss_Ratio : 0.00368 | Metric_L1D_TLB_Miss_Ratio : 0.00490 | Metric_L1D_TLB_Miss_Ratio : 0.00570 |
Metric_L2_TLB_Miss_Ratio : 0.00000 | Metric_L2_TLB_Miss_Ratio : 0.00002 | Metric_L2_TLB_Miss_Ratio : 0.00007 | Metric_L2_TLB_Miss_Ratio : 0.01111 | Metric_L2_TLB_Miss_Ratio : 0.04116 | Metric_L2_TLB_Miss_Ratio : 0.20023 |
Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 | Metric_ITLB_Table_Walk_Ratio : 0.00000 |
Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00000 | Metric_DTLB_Table_Walk_Ratio : 0.00003 | Metric_DTLB_Table_Walk_Ratio : 0.00035 | Metric_DTLB_Table_Walk_Ratio : 0.00190 |
Metric_Load_Port_Util : 0.36531 | Metric_Load_Port_Util : 0.43704 | Metric_Load_Port_Util : 0.41450 | Metric_Load_Port_Util : 0.35545 | Metric_Load_Port_Util : 0.27647 | Metric_Load_Port_Util : 0.25961 |
Metric_Store_Port_Util : 0.05872 | Metric_Store_Port_Util : 0.03892 | Metric_Store_Port_Util : 0.03719 | Metric_Store_Port_Util : 0.01995 | Metric_Store_Port_Util : 0.01500 | Metric_Store_Port_Util : 0.01381 |
Metric_FPU_Util : 0.64930 | Metric_FPU_Util : 0.84466 | Metric_FPU_Util : 0.79088 | Metric_FPU_Util : 0.70447 | Metric_FPU_Util : 0.54795 | Metric_FPU_Util : 0.51453 |
Metric_GFLOPs_Use : 10.20137 | Metric_GFLOPs_Use : 13.45224 | Metric_GFLOPs_Use : 12.57732 | Metric_GFLOPs_Use : 10.50762 | Metric_GFLOPs_Use : 8.73145 | Metric_GFLOPs_Use : 8.13339 |
-
Core_Bound: This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. 表示CPU处理器后端非访存相关的stall引起的性能损失,通常包括ALU单元的资源不足,以及流水线上的指令依赖引起的stall等。
-
Interlock_Bound: No operation issued due to the backend interlock. 表示CPU处理器后端因为发生了pipeline interlock而产生的stall, pipeline interlock就是A指令的执行依赖B执行的某一个pipeline stage的结果,比如raw依赖。
-
Interlock_FPU: No operation issued due to the backend, interlock, FPU. This event counts every cycle that issue is stalled and there is an interlock that is due to an FPU/NEON instruction.
-
FPU_Util: FPU利用率,拿处理器一个cycle最多可以处理的neon指令数(也即处理器后端支持neon计算的port数)除以处理器执行的cycle数得到,在这里用于表征处理器neon单元的利用率。
-
Load_Cache: No operation issued due to the backend, load, Cache miss. 表征因为Cache读延迟导致的stall
-
Metric_L3D_RD_Miss_Ratio: L3 Cache读的缺失率。
-
Metric_Load_Port_Util: 处理器后端 load port 的利用率,拿处理器后端支持load操作的port数除以处理器执行的cycle数得到。
-
L2D_TLB_REFILL: 表征L2D的TLB miss,进而引发 page table walker。
- 这里可能只列举了部分文中出现的 Metric 术语,如有遗漏,请尝试在mperf源码中查找说明,也可以参考 ARM A55 PMU event list。