-
Notifications
You must be signed in to change notification settings - Fork 0
/
neuralnet.py
161 lines (148 loc) · 5.83 KB
/
neuralnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from keras.models import Sequential, load_model
from keras.layers import Dense
import sys
import utils
import random
import numpy as np
import time
# import
# Performs classification using an MLP/1-hidden-layer NN.
FREQ_DIST_FILE = '../train-processed-freqdist.pkl'
BI_FREQ_DIST_FILE = '../train-processed-freqdist-bi.pkl'
TRAIN_PROCESSED_FILE = '../train-processed.csv'
TEST_PROCESSED_FILE = '../test-processed.csv'
TRAIN = True
UNIGRAM_SIZE = 15000
VOCAB_SIZE = UNIGRAM_SIZE
USE_BIGRAMS = False
if USE_BIGRAMS:
BIGRAM_SIZE = 10000
VOCAB_SIZE = UNIGRAM_SIZE + BIGRAM_SIZE
FEAT_TYPE = 'frequency'
def get_feature_vector(tweet):
uni_feature_vector = []
bi_feature_vector = []
words = tweet.split()
for i in xrange(len(words) - 1):
word = words[i]
next_word = words[i + 1]
if unigrams.get(word):
uni_feature_vector.append(word)
if USE_BIGRAMS:
if bigrams.get((word, next_word)):
bi_feature_vector.append((word, next_word))
if len(words) >= 1:
if unigrams.get(words[-1]):
uni_feature_vector.append(words[-1])
return uni_feature_vector, bi_feature_vector
def extract_features(tweets, batch_size=500, test_file=True, feat_type='presence'):
num_batches = int(np.ceil(len(tweets) / float(batch_size)))
for i in xrange(num_batches):
batch = tweets[i * batch_size: (i + 1) * batch_size]
features = np.zeros((batch_size, VOCAB_SIZE))
labels = np.zeros(batch_size)
for j, tweet in enumerate(batch):
if test_file:
tweet_words = tweet[1][0]
tweet_bigrams = tweet[1][1]
else:
tweet_words = tweet[2][0]
tweet_bigrams = tweet[2][1]
labels[j] = tweet[1]
if feat_type == 'presence':
tweet_words = set(tweet_words)
tweet_bigrams = set(tweet_bigrams)
for word in tweet_words:
idx = unigrams.get(word)
if idx:
features[j, idx] += 1
if USE_BIGRAMS:
for bigram in tweet_bigrams:
idx = bigrams.get(bigram)
if idx:
features[j, UNIGRAM_SIZE + idx] += 1
yield features, labels
def process_tweets(csv_file, test_file=True):
tweets = []
print 'Generating feature vectors'
with open(csv_file, 'r') as csv:
lines = csv.readlines()
total = len(lines)
for i, line in enumerate(lines):
if test_file:
tweet_id, tweet = line.split(',')
else:
tweet_id, sentiment, tweet = line.split(',')
feature_vector = get_feature_vector(tweet)
if test_file:
tweets.append((tweet_id, feature_vector))
else:
tweets.append((tweet_id, int(sentiment), feature_vector))
utils.write_status(i + 1, total)
print '\n'
return tweets
def build_model():
model = Sequential()
model.add(Dense(500, input_dim=VOCAB_SIZE, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam', metrics=['accuracy'])
return model
def evaluate_model(model, val_tweets):
correct, total = 0, len(val_tweets)
for val_set_X, val_set_y in extract_features(val_tweets, feat_type=FEAT_TYPE, test_file=False):
prediction = model.predict_on_batch(val_set_X)
prediction = np.round(prediction)
correct += np.sum(prediction == val_set_y[:, None])
return float(correct) / total
if __name__ == '__main__':
np.random.seed(1337)
unigrams = utils.top_n_words(FREQ_DIST_FILE, UNIGRAM_SIZE)
if USE_BIGRAMS:
bigrams = utils.top_n_bigrams(BI_FREQ_DIST_FILE, BIGRAM_SIZE)
tweets = process_tweets(TRAIN_PROCESSED_FILE, test_file=False)
if TRAIN:
train_tweets, val_tweets = utils.split_data(tweets)
else:
random.shuffle(tweets)
train_tweets = tweets
del tweets
print 'Extracting features & training batches'
nb_epochs = 5
batch_size = 500
model = build_model()
n_train_batches = int(np.ceil(len(train_tweets) / float(batch_size)))
best_val_acc = 0.0
for j in xrange(nb_epochs):
i = 1
for training_set_X, training_set_y in extract_features(train_tweets, feat_type=FEAT_TYPE, batch_size=batch_size, test_file=False):
o = model.train_on_batch(training_set_X, training_set_y)
sys.stdout.write('\rIteration %d/%d, loss:%.4f, acc:%.4f' %
(i, n_train_batches, o[0], o[1]))
sys.stdout.flush()
i += 1
val_acc = evaluate_model(model, val_tweets)
print '\nEpoch: %d, val_acc:%.4f' % (j + 1, val_acc)
random.shuffle(train_tweets)
if val_acc > best_val_acc:
print 'Accuracy improved from %.4f to %.4f, saving model' % (best_val_acc, val_acc)
best_val_acc = val_acc
model.save('best_model.h5')
print 'Testing'
del train_tweets
del model
model = load_model('best_model.h5')
test_tweets = process_tweets(TEST_PROCESSED_FILE, test_file=True)
n_test_batches = int(np.ceil(len(test_tweets) / float(batch_size)))
predictions = np.array([])
print 'Predicting batches'
i = 1
for test_set_X, _ in extract_features(test_tweets, feat_type=FEAT_TYPE, batch_size=batch_size, test_file=True):
prediction = np.round(model.predict_on_batch(test_set_X).flatten())
predictions = np.concatenate((predictions, prediction))
utils.write_status(i, n_test_batches)
i += 1
predictions = [(str(j), int(predictions[j]))
for j in range(len(test_tweets))]
utils.save_results_to_csv(predictions, '1layerneuralnet.csv')
print '\nSaved to 1layerneuralnet.csv'