From 7e7eae338d2774f90ba4b5a04d6c53e7299f40de Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Wed, 16 Oct 2024 13:56:17 +0800 Subject: [PATCH] [Misc] Standardize RoPE handling for Qwen2-VL (#9250) --- benchmarks/kernels/benchmark_rope.py | 4 +- requirements-common.txt | 2 +- tests/kernels/test_pos_encoding.py | 8 +- tests/lora/test_layers.py | 2 +- tests/test_config.py | 4 +- vllm/config.py | 21 +-- vllm/engine/arg_utils.py | 11 +- .../model_executor/layers/rotary_embedding.py | 47 ++++--- vllm/model_executor/models/deepseek_v2.py | 2 +- vllm/model_executor/models/phi3_small.py | 2 +- vllm/model_executor/models/qwen2_vl.py | 8 +- vllm/transformers_utils/config.py | 44 +++++- vllm/transformers_utils/configs/__init__.py | 4 - vllm/transformers_utils/configs/qwen2vl.py | 131 ------------------ vllm/worker/cpu_model_runner.py | 6 +- vllm/worker/model_runner.py | 6 +- 16 files changed, 102 insertions(+), 200 deletions(-) delete mode 100644 vllm/transformers_utils/configs/qwen2vl.py diff --git a/benchmarks/kernels/benchmark_rope.py b/benchmarks/kernels/benchmark_rope.py index 73fc9e9dbf461..784b1cf9844e4 100644 --- a/benchmarks/kernels/benchmark_rope.py +++ b/benchmarks/kernels/benchmark_rope.py @@ -31,7 +31,7 @@ def benchmark_rope_kernels_multi_lora( # batched RoPE can take multiple scaling factors batched_rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": tuple(scaling_factors) }) # non-batched RoPE takes only one scaling factor, we create multiple @@ -41,7 +41,7 @@ def benchmark_rope_kernels_multi_lora( non_batched_ropes.append( get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": (scaling_factor, ) })) diff --git a/requirements-common.txt b/requirements-common.txt index 1178143409e2e..ca09f9d35909e 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -4,7 +4,7 @@ numpy < 2.0.0 requests >= 2.26.0 tqdm py-cpuinfo -transformers >= 4.45.0 # Required for Llama 3.2. +transformers >= 4.45.2 # Required for Llama 3.2 and Qwen2-VL. tokenizers >= 0.19.1 # Required for Llama 3. protobuf # Required by LlamaTokenizer. fastapi >= 0.107.0, < 0.113.0; python_version < '3.9' diff --git a/tests/kernels/test_pos_encoding.py b/tests/kernels/test_pos_encoding.py index ba9d2d4389b21..94da00915d40e 100644 --- a/tests/kernels/test_pos_encoding.py +++ b/tests/kernels/test_pos_encoding.py @@ -105,7 +105,7 @@ def test_batched_rotary_embedding( if rotary_dim is None: rotary_dim = head_size rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": (1, ) }) rope = rope.to(dtype=dtype) @@ -166,7 +166,7 @@ def test_batched_rotary_embedding_multi_lora( rotary_dim = head_size scaling_factors: List[int] = [1, 2, 4] rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": tuple(scaling_factors) }) rope = rope.to(dtype=dtype) @@ -211,10 +211,10 @@ def test_rope_module_cache(): MAX_POSITIONS = [123, 1234] BASES = [10000, 1000000] ROPE_SCALINGS = (None, { - "type": "linear", + "rope_type": "linear", "factor": (1, ) }, { - "type": "dynamic", + "rope_type": "dynamic", "factor": 1 }) settings = (HEAD_SIZES, ROTARY_DIMS, MAX_POSITIONS, BASES, IS_NEOX_STYLE, diff --git a/tests/lora/test_layers.py b/tests/lora/test_layers.py index e3233c6b60696..db877219a285c 100644 --- a/tests/lora/test_layers.py +++ b/tests/lora/test_layers.py @@ -951,7 +951,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device, lora_rope.create_lora_weights(max_loras, lora_config) linear_rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style, { - "type": "linear", + "rope_type": "linear", "factor": scaling_factors }) linear_rope = linear_rope.to(dtype=dtype) diff --git a/tests/test_config.py b/tests/test_config.py index 225d71c0bc0ea..b89429005e1d0 100644 --- a/tests/test_config.py +++ b/tests/test_config.py @@ -64,9 +64,9 @@ def test_get_sliding_window(): def test_rope_customization(): - TEST_ROPE_SCALING = {"type": "dynamic", "factor": 2.0} + TEST_ROPE_SCALING = {"rope_type": "dynamic", "factor": 2.0} TEST_ROPE_THETA = 16_000_000.0 - LONGCHAT_ROPE_SCALING = {"type": "linear", "factor": 8.0} + LONGCHAT_ROPE_SCALING = {"rope_type": "linear", "factor": 8.0} llama_model_config = ModelConfig( "meta-llama/Meta-Llama-3-8B-Instruct", diff --git a/vllm/config.py b/vllm/config.py index 7a3248f4087ae..33005ebbd5219 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1739,16 +1739,10 @@ def _get_and_verify_max_len( rope_scaling = getattr(hf_config, "rope_scaling", None) if rope_scaling is not None: - if "type" in rope_scaling: - rope_type = rope_scaling["type"] - elif "rope_type" in rope_scaling: - rope_type = rope_scaling["rope_type"] - else: - raise ValueError( - "rope_scaling must have a 'type' or 'rope_type' key.") + # No need to consider "type" key because of patch_rope_scaling when + # loading HF config + rope_type = rope_scaling["rope_type"] - # The correct one should be "longrope", kept "su" here - # to be backward compatible if rope_type not in ("su", "longrope", "llama3"): if disable_sliding_window: # TODO(robertgshaw): Find a model that supports rope_scaling @@ -1758,11 +1752,10 @@ def _get_and_verify_max_len( "with rope_scaling. Please raise an issue so we can " "investigate.") - if rope_type == "mrope": - scaling_factor = 1 - else: - assert "factor" in rope_scaling - scaling_factor = rope_scaling["factor"] + # NOTE: rope_type == "default" does not define factor + # https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py + scaling_factor = rope_scaling.get("factor", 1.0) + if rope_type == "yarn": derived_max_model_len = rope_scaling[ "original_max_position_embeddings"] diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 1b132cf76a10d..040b8c1bdd0a2 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -454,11 +454,12 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: 'None, we assume the model weights are not ' 'quantized and use `dtype` to determine the data ' 'type of the weights.') - parser.add_argument('--rope-scaling', - default=None, - type=json.loads, - help='RoPE scaling configuration in JSON format. ' - 'For example, {"type":"dynamic","factor":2.0}') + parser.add_argument( + '--rope-scaling', + default=None, + type=json.loads, + help='RoPE scaling configuration in JSON format. ' + 'For example, {"rope_type":"dynamic","factor":2.0}') parser.add_argument('--rope-theta', default=None, type=float, diff --git a/vllm/model_executor/layers/rotary_embedding.py b/vllm/model_executor/layers/rotary_embedding.py index d4e9ed87ed54f..2ed44e2093bbe 100644 --- a/vllm/model_executor/layers/rotary_embedding.py +++ b/vllm/model_executor/layers/rotary_embedding.py @@ -920,13 +920,10 @@ def get_rope( rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base, is_neox_style, dtype) else: - scaling_type = rope_scaling[ - "type"] if "type" in rope_scaling else rope_scaling["rope_type"] - # The correct one should be "longrope" but keep "su" here - # for backward compatible - if scaling_type not in {"su", "longrope"}: - scaling_factor = rope_scaling.get("factor", 1.0) + scaling_type = rope_scaling["rope_type"] + if scaling_type == "llama3": + scaling_factor = rope_scaling["factor"] low_freq_factor = rope_scaling["low_freq_factor"] high_freq_factor = rope_scaling["high_freq_factor"] original_max_position = rope_scaling[ @@ -937,16 +934,39 @@ def get_rope( scaling_factor, low_freq_factor, high_freq_factor, original_max_position) + elif scaling_type == "default": + if "mrope_section" in rope_scaling: + rotary_emb = MRotaryEmbedding( + head_size, + rotary_dim, + max_position, + base, + is_neox_style, + dtype, + mrope_section=rope_scaling["mrope_section"], + ) + else: + rotary_emb = RotaryEmbedding( + head_size, + rotary_dim, + max_position, + base, + is_neox_style, + dtype, + ) elif scaling_type == "linear": + scaling_factor = rope_scaling["factor"] rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim, max_position, base, is_neox_style, scaling_factor, dtype) elif scaling_type == "dynamic": + scaling_factor = rope_scaling["factor"] rotary_emb = DynamicNTKScalingRotaryEmbedding( head_size, rotary_dim, max_position, base, is_neox_style, scaling_factor, dtype) elif scaling_type == "yarn": + scaling_factor = rope_scaling["factor"] original_max_position = rope_scaling[ "original_max_position_embeddings"] extra_kwargs = { @@ -961,6 +981,7 @@ def get_rope( scaling_factor, dtype, **extra_kwargs) elif scaling_type == "deepseek_yarn": + scaling_factor = rope_scaling["factor"] original_max_position = rope_scaling[ "original_max_position_embeddings"] # assert max_position == original_max_position * scaling_factor @@ -973,9 +994,7 @@ def get_rope( rotary_emb = DeepseekScalingRotaryEmbedding( head_size, rotary_dim, original_max_position, base, is_neox_style, scaling_factor, dtype, **extra_kwargs) - # The correct one should be "longrope" but keep "su" here - # for backward compatible - elif scaling_type == "su" or scaling_type == "longrope": + elif scaling_type == "longrope": short_factor = rope_scaling["short_factor"] long_factor = rope_scaling["long_factor"] original_max_position = rope_scaling[ @@ -989,16 +1008,6 @@ def get_rope( head_size, rotary_dim, max_position, original_max_position, base, is_neox_style, dtype, short_factor, long_factor, **extra_kwargs) - elif scaling_type == "mrope": - rotary_emb = MRotaryEmbedding( - head_size, - rotary_dim, - max_position, - base, - is_neox_style, - dtype, - mrope_section=rope_scaling["mrope_section"], - ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") _ROPE_DICT[key] = rotary_emb diff --git a/vllm/model_executor/models/deepseek_v2.py b/vllm/model_executor/models/deepseek_v2.py index 702be7b7f5ed9..38114836bfdbb 100644 --- a/vllm/model_executor/models/deepseek_v2.py +++ b/vllm/model_executor/models/deepseek_v2.py @@ -242,7 +242,7 @@ def __init__( bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj") - rope_scaling['type'] = 'deepseek_yarn' + rope_scaling["rope_type"] = 'deepseek_yarn' self.rotary_emb = get_rope(qk_rope_head_dim, rotary_dim=qk_rope_head_dim, max_position=max_position_embeddings, diff --git a/vllm/model_executor/models/phi3_small.py b/vllm/model_executor/models/phi3_small.py index 4cfeb3bb3496f..3a7afc606bb9a 100644 --- a/vllm/model_executor/models/phi3_small.py +++ b/vllm/model_executor/models/phi3_small.py @@ -179,7 +179,7 @@ def __init__( rope_scaling["factor"] = self.rope_position_scale else: rope_scaling = { - "type": "linear", + "rope_type": "linear", "factor": self.rope_position_scale, } diff --git a/vllm/model_executor/models/qwen2_vl.py b/vllm/model_executor/models/qwen2_vl.py index 4a39b3fbe5a41..bdc21df8b6563 100644 --- a/vllm/model_executor/models/qwen2_vl.py +++ b/vllm/model_executor/models/qwen2_vl.py @@ -34,6 +34,8 @@ from transformers.image_utils import (get_image_size, infer_channel_dimension_format, to_numpy_array) +from transformers.models.qwen2_vl.configuration_qwen2_vl import ( + Qwen2VLConfig, Qwen2VLVisionConfig) from transformers.models.qwen2_vl.image_processing_qwen2_vl import ( make_batched_images, make_batched_videos, smart_resize) @@ -62,8 +64,7 @@ from vllm.multimodal.image import cached_get_image_processor from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors, SequenceData -from vllm.transformers_utils.configs.qwen2vl import (Qwen2VLConfig, - Qwen2VLVisionConfig) +from vllm.transformers_utils.config import uses_mrope from vllm.transformers_utils.processor import get_processor from vllm.utils import is_cpu @@ -1061,8 +1062,7 @@ def forward( if image_input is None and video_input is None: inputs_embeds = None else: - rope_scaling = getattr(self.config, "rope_scaling", {}) - if rope_scaling.get("type", None) == "mrope": + if uses_mrope(self.config): assert positions.ndim == 2 and positions.size(0) == 3, ( "multimodal section rotary embedding requires " f"(3, seq_len) positions, but got {positions.size()}") diff --git a/vllm/transformers_utils/config.py b/vllm/transformers_utils/config.py index b33449c42ecf5..46405f3529215 100644 --- a/vllm/transformers_utils/config.py +++ b/vllm/transformers_utils/config.py @@ -23,8 +23,8 @@ MedusaConfig, MllamaConfig, MLPSpeculatorConfig, MPTConfig, NemotronConfig, NVLM_D_Config, - Qwen2VLConfig, RWConfig, - SolarConfig, UltravoxConfig) + RWConfig, SolarConfig, + UltravoxConfig) # yapf: enable from vllm.transformers_utils.utils import check_gguf_file @@ -57,7 +57,6 @@ "NVLM_D": NVLM_D_Config, "solar": SolarConfig, "ultravox": UltravoxConfig, - "qwen2_vl": Qwen2VLConfig, **_CONFIG_REGISTRY_OVERRIDE_HF } @@ -91,6 +90,43 @@ def file_or_path_exists(model: Union[str, Path], config_name, revision, return False +def patch_rope_scaling(config: PretrainedConfig) -> None: + """Provide backwards compatibility for RoPE.""" + text_config = getattr(config, "text_config", None) + if text_config is not None: + patch_rope_scaling(text_config) + + rope_scaling = getattr(config, "rope_scaling", None) + if rope_scaling is not None: + patch_rope_scaling_dict(rope_scaling) + + +def patch_rope_scaling_dict(rope_scaling: Dict[str, Any]) -> None: + if "rope_type" not in rope_scaling and "type" in rope_scaling: + rope_scaling["rope_type"] = rope_scaling["type"] + logger.info("Replacing legacy 'type' key with 'rope_type'") + + if "rope_type" not in rope_scaling: + raise ValueError("rope_scaling should have a 'rope_type' key") + + if rope_scaling["rope_type"] == "su": + rope_scaling["rope_type"] = "longrope" + logger.warning("Replacing legacy rope_type 'su' with 'longrope'") + elif rope_scaling["rope_type"] == "mrope": + assert "mrope_section" in rope_scaling + rope_scaling["rope_type"] = "default" + logger.warning("Replacing legacy rope_type 'mrope' with 'default'") + + +def uses_mrope(config: PretrainedConfig) -> bool: + """Detect if the model with this config uses M-ROPE.""" + rope_scaling = getattr(config, "rope_scaling", None) + if rope_scaling is None: + return False + + return "mrope_section" in rope_scaling + + def get_config( model: Union[str, Path], trust_remote_code: bool, @@ -191,6 +227,8 @@ def get_config( ) config.update({key: value}) + patch_rope_scaling(config) + return config diff --git a/vllm/transformers_utils/configs/__init__.py b/vllm/transformers_utils/configs/__init__.py index 8d6385d42d002..f0d79197a82c5 100644 --- a/vllm/transformers_utils/configs/__init__.py +++ b/vllm/transformers_utils/configs/__init__.py @@ -14,8 +14,6 @@ from vllm.transformers_utils.configs.mpt import MPTConfig from vllm.transformers_utils.configs.nemotron import NemotronConfig from vllm.transformers_utils.configs.nvlm_d import NVLM_D_Config -from vllm.transformers_utils.configs.qwen2vl import (Qwen2VLConfig, - Qwen2VLVisionConfig) from vllm.transformers_utils.configs.solar import SolarConfig from vllm.transformers_utils.configs.ultravox import UltravoxConfig @@ -35,6 +33,4 @@ "NVLM_D_Config", "SolarConfig", "UltravoxConfig", - "Qwen2VLConfig", - "Qwen2VLVisionConfig", ] diff --git a/vllm/transformers_utils/configs/qwen2vl.py b/vllm/transformers_utils/configs/qwen2vl.py deleted file mode 100644 index 92dd962790bc8..0000000000000 --- a/vllm/transformers_utils/configs/qwen2vl.py +++ /dev/null @@ -1,131 +0,0 @@ -# coding=utf-8 -# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. -# All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Qwen2VL model configuration""" - -import os -from typing import Union - -from transformers import PretrainedConfig - - -class Qwen2VLVisionConfig(PretrainedConfig): - model_type = "qwen2_vl" - - def __init__( - self, - depth=32, - embed_dim=1280, - hidden_size=3584, - hidden_act="quick_gelu", - mlp_ratio=4, - num_heads=16, - in_channels=3, - patch_size=14, - spatial_merge_size=2, - temporal_patch_size=2, - **kwargs, - ): - super().__init__(**kwargs) - - self.depth = depth - self.embed_dim = embed_dim - self.hidden_size = hidden_size - self.hidden_act = hidden_act - self.mlp_ratio = mlp_ratio - self.num_heads = num_heads - self.in_channels = in_channels - self.patch_size = patch_size - self.spatial_merge_size = spatial_merge_size - self.temporal_patch_size = temporal_patch_size - - @classmethod - def from_pretrained(cls, pretrained_model_name_or_path: Union[str, - os.PathLike], - **kwargs) -> "PretrainedConfig": - cls._set_token_in_kwargs(kwargs) - - config_dict, kwargs = cls.get_config_dict( - pretrained_model_name_or_path, **kwargs) - - if config_dict.get("model_type") == "qwen2_vl": - config_dict = config_dict["vision_config"] - - return cls.from_dict(config_dict, **kwargs) - - -class Qwen2VLConfig(PretrainedConfig): - - def __init__( - self, - vocab_size=152064, - hidden_size=8192, - intermediate_size=29568, - num_hidden_layers=80, - num_attention_heads=64, - num_key_value_heads=8, - hidden_act="silu", - max_position_embeddings=32768, - initializer_range=0.02, - rms_norm_eps=1e-05, - use_cache=True, - tie_word_embeddings=False, - rope_theta=1000000.0, - use_sliding_window=False, - sliding_window=4096, - max_window_layers=80, - attention_dropout=0.0, - vision_config=None, - rope_scaling=None, - **kwargs, - ): - if isinstance(vision_config, dict): - self.vision_config = Qwen2VLVisionConfig(**vision_config) - elif vision_config is None: - self.vision_config = Qwen2VLVisionConfig() - - self.vocab_size = vocab_size - self.max_position_embeddings = max_position_embeddings - self.hidden_size = hidden_size - self.intermediate_size = intermediate_size - self.num_hidden_layers = num_hidden_layers - self.num_attention_heads = num_attention_heads - self.use_sliding_window = use_sliding_window - self.sliding_window = sliding_window - self.max_window_layers = max_window_layers - - # for backward compatibility - if num_key_value_heads is None: - num_key_value_heads = num_attention_heads - - self.num_key_value_heads = num_key_value_heads - self.hidden_act = hidden_act - self.initializer_range = initializer_range - self.rms_norm_eps = rms_norm_eps - self.use_cache = use_cache - self.rope_theta = rope_theta - self.attention_dropout = attention_dropout - self.rope_scaling = rope_scaling - - # NOTE: the following section from original transformers config - # for Qwen2-VL is commented out to address rope config loading issue - # - # if self.rope_scaling is not None and "type" in self.rope_scaling: - # if self.rope_scaling["type"] == "mrope": - # self.rope_scaling["type"] = "default" - # self.rope_scaling["rope_type"] = self.rope_scaling["type"] - # rope_config_validation(self) - - super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) diff --git a/vllm/worker/cpu_model_runner.py b/vllm/worker/cpu_model_runner.py index 795511aea6754..dd38b550eb011 100644 --- a/vllm/worker/cpu_model_runner.py +++ b/vllm/worker/cpu_model_runner.py @@ -19,6 +19,7 @@ MultiModalInputs) from vllm.sequence import (IntermediateTensors, SequenceData, SequenceGroupMetadata) +from vllm.transformers_utils.config import uses_mrope from vllm.utils import make_tensor_with_pad from vllm.worker.model_runner_base import ( ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase, @@ -439,10 +440,7 @@ def __init__( def model_is_mrope(self) -> bool: """Detect if the model has "mrope" rope_scaling type. mrope requires keep "rope_deltas" between prompt and decoding phases.""" - rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {}) - if rope_scaling is None: - return False - return rope_scaling.get("type", None) == "mrope" + return uses_mrope(self.model_config.hf_config) def load_model(self) -> None: self.model = get_model(model_config=self.model_config, diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index f88b1d84fbcd1..0f3c379cee8f0 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -47,6 +47,7 @@ LRUCacheWorkerPromptAdapterManager) from vllm.sampling_params import SamplingParams from vllm.sequence import IntermediateTensors, SequenceGroupMetadata +from vllm.transformers_utils.config import uses_mrope from vllm.utils import (DeviceMemoryProfiler, PyObjectCache, async_tensor_h2d, flatten_2d_lists, is_hip, is_pin_memory_available, supports_dynamo) @@ -1379,10 +1380,7 @@ def list_prompt_adapters(self) -> Set[int]: def model_is_mrope(self) -> bool: """Detect if the model has "mrope" rope_scaling type. mrope requires keep "rope_deltas" between prompt and decoding phases.""" - rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {}) - if rope_scaling is None: - return False - return rope_scaling.get("type", None) == "mrope" + return uses_mrope(self.model_config.hf_config) @torch.inference_mode() def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None: