-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
63 lines (45 loc) · 1.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from torch import load, tensor
from model_architectural import BERT_Arch
import torch
import re
import joblib
import numpy as np
from transformers import BertTokenizerFast
from flask import Flask, request, render_template
from transformers import AutoModel
import sklearn
max_seq_len = 11
tokenizer = joblib.load('tokenizer')
le = joblib.load('le')
#model = load('./bert_model.pt')
#print(model.state_dict())
bert = AutoModel.from_pretrained('bert-base-uncased')
model = BERT_Arch(bert)
model.load_state_dict(torch.load('bert_model.pt')) # it takes the loaded dictionary, not the path file itself
app = Flask(__name__)
@app.route("/")
def home():
return (render_template("index.html"))
@app.route("/get", methods=["POST", "GET"])
def get_bot_response():
str1 = str(request.args.get('msg'))
str1 = re.sub(r'[^a-zA-Z ]+', '', str1)
test_text = [str1]
model.eval()
tokens_test_data = tokenizer(
test_text,
max_length=max_seq_len,
pad_to_max_length=True,
truncation=True,
return_token_type_ids=False
)
test_seq = tensor(tokens_test_data['input_ids'])
test_mask = tensor(tokens_test_data['attention_mask'])
preds = None
preds = model(test_seq, test_mask)
preds = preds.detach().cpu().numpy()
preds = np.argmax(preds, axis=1)
# print('Response: ', le.inverse_transform(preds)[0])
return str((le.inverse_transform(preds)[0]))
if __name__ == "__main__":
app.run(debug=True)