forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_agent.py
224 lines (182 loc) · 10.7 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from typing import Union
from collections import OrderedDict
import numpy as np
from rl_coach.agents.actor_critic_agent import ActorCriticAgent
from rl_coach.agents.agent import Agent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import DDPGActorHeadParameters, DDPGVHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \
AgentParameters, EmbedderScheme
from rl_coach.core_types import ActionInfo, EnvironmentSteps
from rl_coach.exploration_policies.ou_process import OUProcessParameters
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.spaces import BoxActionSpace, GoalsSpace
class DDPGCriticNetworkParameters(NetworkParameters):
def __init__(self, use_batchnorm=False):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=use_batchnorm),
'action': InputEmbedderParameters(scheme=EmbedderScheme.Shallow)}
self.middleware_parameters = FCMiddlewareParameters()
self.heads_parameters = [DDPGVHeadParameters()]
self.optimizer_type = 'Adam'
self.batch_size = 64
self.async_training = False
self.learning_rate = 0.001
self.adam_optimizer_beta2 = 0.999
self.optimizer_epsilon = 1e-8
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
# self.l2_regularization = 1e-2
class DDPGActorNetworkParameters(NetworkParameters):
def __init__(self, use_batchnorm=False):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=use_batchnorm)}
self.middleware_parameters = FCMiddlewareParameters(batchnorm=use_batchnorm)
self.heads_parameters = [DDPGActorHeadParameters(batchnorm=use_batchnorm)]
self.optimizer_type = 'Adam'
self.batch_size = 64
self.adam_optimizer_beta2 = 0.999
self.optimizer_epsilon = 1e-8
self.async_training = False
self.learning_rate = 0.0001
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
class DDPGAlgorithmParameters(AlgorithmParameters):
"""
:param num_steps_between_copying_online_weights_to_target: (StepMethod)
The number of steps between copying the online network weights to the target network weights.
:param rate_for_copying_weights_to_target: (float)
When copying the online network weights to the target network weights, a soft update will be used, which
weight the new online network weights by rate_for_copying_weights_to_target
:param num_consecutive_playing_steps: (StepMethod)
The number of consecutive steps to act between every two training iterations
:param use_target_network_for_evaluation: (bool)
If set to True, the target network will be used for predicting the actions when choosing actions to act.
Since the target network weights change more slowly, the predicted actions will be more consistent.
:param action_penalty: (float)
The amount by which to penalize the network on high action feature (pre-activation) values.
This can prevent the actions features from saturating the TanH activation function, and therefore prevent the
gradients from becoming very low.
:param clip_critic_targets: (Tuple[float, float] or None)
The range to clip the critic target to in order to prevent overestimation of the action values.
:param use_non_zero_discount_for_terminal_states: (bool)
If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state
values. If set to False, the terminal states reward will be taken as the target return for the network.
"""
def __init__(self):
super().__init__()
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
self.rate_for_copying_weights_to_target = 0.001
self.num_consecutive_playing_steps = EnvironmentSteps(1)
self.use_target_network_for_evaluation = False
self.action_penalty = 0
self.clip_critic_targets = None # expected to be a tuple of the form (min_clip_value, max_clip_value) or None
self.use_non_zero_discount_for_terminal_states = False
class DDPGAgentParameters(AgentParameters):
def __init__(self, use_batchnorm=False):
super().__init__(algorithm=DDPGAlgorithmParameters(),
exploration=OUProcessParameters(),
memory=EpisodicExperienceReplayParameters(),
networks=OrderedDict([("actor", DDPGActorNetworkParameters(use_batchnorm=use_batchnorm)),
("critic", DDPGCriticNetworkParameters(use_batchnorm=use_batchnorm))]))
@property
def path(self):
return 'rl_coach.agents.ddpg_agent:DDPGAgent'
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
class DDPGAgent(ActorCriticAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.q_values = self.register_signal("Q")
self.TD_targets_signal = self.register_signal("TD targets")
self.action_signal = self.register_signal("actions")
def learn_from_batch(self, batch):
actor = self.networks['actor']
critic = self.networks['critic']
actor_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys()
critic_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys()
# TD error = r + discount*max(q_st_plus_1) - q_st
next_actions, actions_mean = actor.parallel_prediction([
(actor.target_network, batch.next_states(actor_keys)),
(actor.online_network, batch.states(actor_keys))
])
critic_inputs = copy.copy(batch.next_states(critic_keys))
critic_inputs['action'] = next_actions
q_st_plus_1 = critic.target_network.predict(critic_inputs)[0]
# calculate the bootstrapped TD targets while discounting terminal states according to
# use_non_zero_discount_for_terminal_states
if self.ap.algorithm.use_non_zero_discount_for_terminal_states:
TD_targets = batch.rewards(expand_dims=True) + self.ap.algorithm.discount * q_st_plus_1
else:
TD_targets = batch.rewards(expand_dims=True) + \
(1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * q_st_plus_1
# clip the TD targets to prevent overestimation errors
if self.ap.algorithm.clip_critic_targets:
TD_targets = np.clip(TD_targets, *self.ap.algorithm.clip_critic_targets)
self.TD_targets_signal.add_sample(TD_targets)
# get the gradients of the critic output with respect to the action
critic_inputs = copy.copy(batch.states(critic_keys))
critic_inputs['action'] = actions_mean
action_gradients = critic.online_network.predict(critic_inputs,
outputs=critic.online_network.gradients_wrt_inputs[1]['action'])
# train the critic
critic_inputs = copy.copy(batch.states(critic_keys))
critic_inputs['action'] = batch.actions(len(batch.actions().shape) == 1)
# also need the inputs for when applying gradients so batchnorm's update of running mean and stddev will work
result = critic.train_and_sync_networks(critic_inputs, TD_targets, use_inputs_for_apply_gradients=True)
total_loss, losses, unclipped_grads = result[:3]
# apply the gradients from the critic to the actor
initial_feed_dict = {actor.online_network.gradients_weights_ph[0]: -action_gradients}
gradients = actor.online_network.predict(batch.states(actor_keys),
outputs=actor.online_network.weighted_gradients[0],
initial_feed_dict=initial_feed_dict)
# also need the inputs for when applying gradients so batchnorm's update of running mean and stddev will work
if actor.has_global:
actor.apply_gradients_to_global_network(gradients, additional_inputs=copy.copy(batch.states(critic_keys)))
actor.update_online_network()
else:
actor.apply_gradients_to_online_network(gradients, additional_inputs=copy.copy(batch.states(critic_keys)))
return total_loss, losses, unclipped_grads
def train(self):
return Agent.train(self)
def choose_action(self, curr_state):
if not (isinstance(self.spaces.action, BoxActionSpace) or isinstance(self.spaces.action, GoalsSpace)):
raise ValueError("DDPG works only for continuous control problems")
# convert to batch so we can run it through the network
tf_input_state = self.prepare_batch_for_inference(curr_state, 'actor')
if self.ap.algorithm.use_target_network_for_evaluation:
actor_network = self.networks['actor'].target_network
else:
actor_network = self.networks['actor'].online_network
action_values = actor_network.predict(tf_input_state).squeeze()
action = self.exploration_policy.get_action(action_values)
self.action_signal.add_sample(action)
# get q value
tf_input_state = self.prepare_batch_for_inference(curr_state, 'critic')
action_batch = np.expand_dims(action, 0)
if type(action) != np.ndarray:
action_batch = np.array([[action]])
tf_input_state['action'] = action_batch
q_value = self.networks['critic'].online_network.predict(tf_input_state)[0]
self.q_values.add_sample(q_value)
action_info = ActionInfo(action=action,
action_value=q_value)
return action_info