Skip to content

Latest commit

 

History

History

04-ShadowCube

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Shadow Cube Tutorial

Windows (DirectX 12)       
Linux (Vulkan)             
MacOS (Metal)              
iOS (Metal)
Shadow Cube on Windows Shadow Cube on Linux Shadow Cube on MacOS Shadow Cube on iOS

This tutorial demonstrates rendering shadow of the textured cube on the floor plane in two render passes using Methane Kit:

Tutorial demonstrates the use of the following Methane Kit features in addition to those demonstrated in the TexturedCube tutorial:

  • Rendering with multiple render passes;
  • Using a texture as a render target attachment in one pass and as an input program binding in another pass;
  • Compiling and loading shader code with macro-definitions to render state programs;
  • Using the graphics extension MeshBuffers and TexturedMeshBuffers classes to simplify mesh rendering code;
  • Implementing a simple shadow rendering technique. See the detailed technique description here.

Application Controls

Common keyboard controls are enabled by the Platform, Graphics and UserInterface application controllers:

Application and Frame Class Definitions

ShadowCubeApp class is declared in header file ShadowCubeApp.h and the application class is derived from UserInterface::App base class, same as in the previous tutorial. Shaders/ShadowCubeUniforms.h header contains the declaration of shader uniform structures shared between HLSL shader code and C++:

  • Constants data structure with lighting parameters is saved to the root constant buffer via program argument binding g_constants, which has a single instance in the application and its data is constant for all frames.
  • SceneUniforms data structure with eye and light positions is saved to the root constant buffer via program argument binding g_scene_uniforms with per-frame buffers containing volatile uniforms data.
  • MeshUniforms data structure contains Model/MVP matrices and shadow MVP+Transform matrix stored in 4 instances of cube and floor meshes multiplied by shadow and final passes.

Uniforms for shadow and final passes are stored in gfx::TexturedMeshBuffers objects, one for the cube mesh in m_cube_buffers_ptr and one for the floor mesh in m_floor_buffers_ptr.

Uniform structures in Shaders/ShadowCubeUniforms.h:

struct Constants
{
    float4 light_color;
    float  light_power;
    float  light_ambient_factor;
    float  light_specular_factor;
    float  _padding;
};

struct SceneUniforms
{
    float4   eye_position;
    float4   light_position;
};

struct MeshUniforms
{
    float4x4 model_matrix;
    float4x4 mvp_matrix;
    float4x4 shadow_mvpx_matrix;
};

MeshBuffers.hpp implements the auxiliary class TexturedMeshBuffers<UniformsType>, which manages vertex and index buffers and texture data for a particular mesh. This data is passed to the constructor as a reference to the BaseMesh object.

Two gfx::Camera objects are used: one m_view_camera is a usual perspective view camera, while the other m_light_camera is a directional light camera with orthogonal projection used to generate the transformation matrix from view to light coordinate systems.

Also, there are two Rhi::Sampler objects: one is used for sampling cube and floor textures, while the other is used for sampling the shadow map texture.

#pragma once

#include <Methane/Kit.h>
#include <Methane/UserInterface/App.hpp>

namespace hlslpp
{
#define ENABLE_SHADOWS
#pragma pack(push, 16)
#include "Shaders/ShadowCubeUniforms.h"
#pragma pack(pop)
}

namespace Methane::Tutorials
{

namespace gfx = Methane::Graphics;
namespace rhi = Methane::Graphics::Rhi;

struct ShadowCubeFrame final : gfx::AppFrame
{
    ...
};

using UserInterfaceApp = UserInterface::App<ShadowCubeFrame>;

class ShadowCubeApp final : public UserInterfaceApp
{
   ...

private:
    using TexturedMeshBuffers = gfx::TexturedMeshBuffers<hlslpp::MeshUniforms>;

    struct RenderPassState
    {
        RenderPassState(bool is_final_pass, const std::string& command_group_name);
        void Release();

        const bool                       is_final_pass;
        const rhi::CommandListDebugGroup debug_group;
        rhi::RenderState                 render_state;
        rhi::ViewState                   view_state;
    };

    bool Animate(double elapsed_seconds, double delta_seconds);
    void RenderScene(const RenderPassState& render_pass, const ShadowCubeFrame::PassResources& render_pass_resources) const;

    gfx::Camera              m_view_camera;
    gfx::Camera              m_light_camera;
    rhi::Sampler             m_texture_sampler;
    rhi::Sampler             m_shadow_sampler;
    Ptr<TexturedMeshBuffers> m_cube_buffers_ptr;
    Ptr<TexturedMeshBuffers> m_floor_buffers_ptr;
    rhi::RenderPattern       m_shadow_pass_pattern;
    RenderPassState          m_shadow_pass { false, "Shadow Render Pass" };
    RenderPassState          m_final_pass  { true,  "Final Render Pass" };
};

} // namespace Methane::Tutorials

ShadowCubeFrame struct contains frame-dependent volatile resources:

  • Shadow & final pass resources in shadow_pass and final_pass:
    • Mesh bindings for cube and floor:
      • Program bindings configuration program_bindings
      • Program argument binding for scene uniforms scene_uniforms_binding_ptr
      • Program argument binding for mesh uniforms mesh_uniforms_binding_ptr
    • Render target texture rt_texture
    • Render pass object render_pass
    • Render command list cmd_list
  • Command list set for execution on the frame, which contains command lists from shadow and final passes.
struct ShadowCubeFrame final : gfx::AppFrame
{
    struct PassResources
    {
        struct ProgramBindings
        {
            rhi::ProgramBindings          program_bindings;
            rhi::IProgramArgumentBinding* scene_uniforms_binding_ptr = nullptr;
            rhi::IProgramArgumentBinding* mesh_uniforms_binding_ptr  = nullptr;
        };

        rhi::Texture           rt_texture;
        rhi::RenderPass        render_pass;
        rhi::RenderCommandList cmd_list;
        ProgramBindings        cube_bindings;
        ProgramBindings        floor_bindings;
    };

    PassResources       shadow_pass;
    PassResources       final_pass;
    rhi::CommandListSet execute_cmd_list_set;

    using gfx::AppFrame::AppFrame;
};

Graphics Resources Initialization

Initialization of textures, buffers, and samplers is mostly the same as for the Textured Cube tutorial, so we skip their description here.

Final pass render state initialization has some differences:

  • Pixel and vertex shaders are loaded for a specific combination of macro definitions used during compilation. This set of macro definitions is described in the rhi::Shader::MacroDefinitions variable textured_shadows_definitions, which is passed to the rhi::Program::ShaderSet description structure.
    // ========= Final Pass Render & View States =========

    const rhi::Shader::EntryFunction    vs_main{ "ShadowCube", "CubeVS" };
    const rhi::Shader::EntryFunction    ps_main{ "ShadowCube", "CubePS" };
    const rhi::Shader::MacroDefinitions textured_shadows_definitions{ { "ENABLE_SHADOWS", "" }, { "ENABLE_TEXTURING", "" } };

    // Create final pass rendering state with program
    rhi::RenderState::Settings final_state_settings
    {
        render_context.CreateProgram(
            rhi::Program::Settings
            {
                rhi::Program::ShaderSet
                {
                    { rhi::ShaderType::Vertex, { Data::ShaderProvider::Get(), vs_main, textured_shadows_definitions } },
                    { rhi::ShaderType::Pixel,  { Data::ShaderProvider::Get(), ps_main, textured_shadows_definitions } },
                },
                rhi::ProgramInputBufferLayouts
                {
                    rhi::Program::InputBufferLayout
                    {
                        rhi::Program::InputBufferLayout::ArgumentSemantics { cube_mesh.GetVertexLayout().GetSemantics() }
                    }
                },
                rhi::ProgramArgumentAccessors
                {
                    META_PROGRAM_ARG_ROOT_BUFFER_CONSTANT(rhi::ShaderType::Pixel, "g_constants"),
                    META_PROGRAM_ARG_ROOT_BUFFER_FRAME_CONSTANT(rhi::ShaderType::Pixel, "g_scene_uniforms"),
                    META_PROGRAM_ARG_ROOT_BUFFER_MUTABLE(rhi::ShaderType::Vertex, "g_mesh_uniforms")
                },
                GetScreenRenderPattern().GetAttachmentFormats()
            }
        ),
        GetScreenRenderPattern()
    };
    final_state_settings.depth.enabled = true;

    m_final_pass.render_state = render_context.CreateRenderState( final_state_settings);
    m_final_pass.view_state = GetViewState();

rhi::RenderPattern class is used to define specific color/depth/stencil attachments configuration including their formats, load and store actions, without relation to specific resources used for attachments (this relation is set with rhi::RenderPass objects). Shadow pass pattern uses only the depth attachment, which is cleared on load and stored for further use in the final screen render pass. The pattern also defines render pass access to shader resources and is marked with the intermediate pass flag.

    // ========= Shadow Pass Render & View States =========

    // Create shadow-pass render pattern
    m_shadow_pass_pattern = render_context.CreateRenderPattern({
        { }, // No color attachments
        rhi::IRenderPattern::DepthAttachment(
            0U, context_settings.depth_stencil_format, 1U,
            rhi::RenderPassAttachment::LoadAction::Clear,
            rhi::RenderPassAttachment::StoreAction::Store,
            context_settings.clear_depth_stencil->first
        ),
        std::nullopt, // No stencil attachment
        rhi::RenderPassAccessMask(rhi::RenderPassAccess::ShaderResources),
        false // intermediate render pass
    });

Shadow pass render state is using the same shader code but compiled with a different set of macro definitions textured_definitions. As a result, the program has a different set of available arguments. Note that the program includes only the Vertex shader since it will be used for rendering to the depth buffer only, without a color attachment.

    // Create shadow-pass rendering state with program
    const rhi::Shader::MacroDefinitions textured_definitions{ { "ENABLE_TEXTURING", "" } };
    rhi::RenderState::Settings shadow_state_settings
    {
        render_context.CreateProgram(
            rhi::Program::Settings
            {
                rhi::Program::ShaderSet
                {
                    { rhi::ShaderType::Vertex, { Data::ShaderProvider::Get(), vs_main, textured_definitions } },
                },
                final_state_settings.program.GetSettings().input_buffer_layouts,
                rhi::ProgramArgumentAccessors
                {
                    META_PROGRAM_ARG_ROOT_BUFFER_MUTABLE(rhi::ShaderType::Vertex, "g_mesh_uniforms")
                },
                m_shadow_pass_pattern.GetAttachmentFormats()
            }
        ),
        m_shadow_pass_pattern
    };
    shadow_state_settings.depth.enabled = true;
    m_shadow_pass.render_state = render_context.CreateRenderState( shadow_state_settings);

The Shadow-pass view state is bound to the size of the Shadow-map texture:

    m_shadow_pass.view_state = rhi::ViewState({
        { gfx::GetFrameViewport(g_shadow_map_size)    },
        { gfx::GetFrameScissorRect(g_shadow_map_size) }
    });

Frame-dependent resources are initialized for each frame in loop. Execution command list set includes two command lists: one for shadow pass rendering and another for final pass rendering.

    for(ShadowCubeFrame& frame : GetFrames())
    {
        // ========= Shadow Pass Resources =========
        ...

        // ========= Final Pass Resources =========
        ...

        // Rendering command lists sequence
        frame.execute_cmd_list_set = rhi::CommandListSet({
            frame.shadow_pass.cmd_list.GetInterface(),
            frame.final_pass.cmd_list.GetInterface()
        }, frame.index);
    }

Shadow-map render target texture frame.shadow_pass.rt_texture_ptr is created for each frame using common settings with a depth-stencil format taken from render context settings. Shadow-map texture settings also specify a Usage bit-mask with RenderTarget and ShaderRead flags to allow both rendering to this texture and sampling from it in a final pass:ss:

    const rhi::Texture::Settings shadow_texture_settings = rhi::Texture::Settings::ForDepthStencil(
        gfx::Dimensions(g_shadow_map_size),
        context_settings.depth_stencil_format, context_settings.clear_depth_stencil,
        rhi::ResourceUsageMask({ rhi::ResourceUsage::RenderTarget, rhi::ResourceUsage::ShaderRead })
    );

Program bindings frame.shadow_pass.\[cube\|floor\]_bindings.program_bindings are created for both cube and floor meshes, with the argument binding for g_mesh_uniforms of Vertex shader type saved to mesh_uniforms_binding_ptr to be used later in the ShadowCubeApp::Update() method for setting up the root constant data.

The shadow render pass frame.shadow_pass.render_pass is created without color attachments but with a depth attachment bound to the shadow-map texture for the current frame frame.shadow_pass.rt_texture. The depth attachment is created with a Clear load action to clear the depth texture with the provided depth value taken from render context settings context_settings.clear_depth_stencil->first. The Store action is used to retain the rendered depth texture content for the next render pass. The render command list is created and bound to the shadow render pass.

        // ========= Shadow Pass Resources =========
        
        // Shadow-pass resource bindings for cube rendering
        ShadowCubeFrame::PassResources::ProgramBindings& shadow_cube_binds = frame.shadow_pass.cube_bindings;
        shadow_cube_binds.program_bindings = shadow_state_settings.program.CreateBindings({ }, frame.index);
        shadow_cube_binds.mesh_uniforms_binding_ptr = &shadow_cube_binds.program_bindings.Get({ rhi::ShaderType::Vertex, "g_mesh_uniforms" });

        // Shadow-pass resource bindings for floor rendering
        ShadowCubeFrame::PassResources::ProgramBindings& shadow_floor_binds = frame.shadow_pass.floor_bindings;
        shadow_floor_binds.program_bindings = shadow_state_settings.program.CreateBindings({ }, frame.index);
        shadow_floor_binds.mesh_uniforms_binding_ptr = &shadow_floor_binds.program_bindings.Get({ rhi::ShaderType::Vertex, "g_mesh_uniforms" });

        // Create depth texture for shadow map rendering
        frame.shadow_pass.rt_texture = render_context.CreateTexture(shadow_texture_settings);
        
        // Create shadow pass configuration with depth attachment
        frame.shadow_pass.render_pass = m_shadow_pass_pattern.CreateRenderPass({
            { frame.shadow_pass.rt_texture.GetInterface() },
            shadow_texture_settings.dimensions.AsRectSize()
        });
        
        // Create render pass and command list for shadow pass rendering
        frame.shadow_pass.cmd_list = render_cmd_queue.CreateRenderCommandList(frame.shadow_pass.render_pass);

The same resources are created for the final render pass. Program bindings are created for cube and floor rendering but with an extended set of program arguments because the final pass rendering program includes both pixel and vertex shaders, unlike the shadow pass which only includes the vertex shader.

The render target texture is bound to the frame screen texture, i.e., the frame buffer in the swap-chain. The final render pass is also bound to the screen render pass for the current frame, which is created by the base graphics application class Methane::Graphics::App. The render command list is created and bound to the final render pass.

        // ========= Final Pass Resources =========

        // Final-pass resource bindings for cube rendering
        ShadowCubeFrame::PassResources::ProgramBindings& final_cube_binds = frame.final_pass.cube_bindings;
        final_cube_binds.program_bindings = final_state_settings.program.CreateBindings({
            { { rhi::ShaderType::Pixel,  "g_constants"      }, rhi::RootConstant(g_scene_constants)               },
            { { rhi::ShaderType::Pixel,  "g_shadow_map"     }, frame.shadow_pass.rt_texture.GetResourceView()     },
            { { rhi::ShaderType::Pixel,  "g_shadow_sampler" }, m_shadow_sampler.GetResourceView()                 },
            { { rhi::ShaderType::Pixel,  "g_texture"        }, m_cube_buffers_ptr->GetTexture().GetResourceView() },
            { { rhi::ShaderType::Pixel,  "g_texture_sampler"}, m_texture_sampler.GetResourceView()                },
        }, frame.index);
        final_cube_binds.scene_uniforms_binding_ptr = &final_cube_binds.program_bindings.Get({ rhi::ShaderType::Pixel, "g_scene_uniforms" });
        final_cube_binds.mesh_uniforms_binding_ptr  = &final_cube_binds.program_bindings.Get({ rhi::ShaderType::Vertex, "g_mesh_uniforms" });

        // Final-pass resource bindings for floor rendering - patched a copy of cube bindings
        ShadowCubeFrame::PassResources::ProgramBindings& final_floor_binds = frame.final_pass.floor_bindings;
        final_floor_binds.program_bindings = rhi::ProgramBindings(frame.final_pass.cube_bindings.program_bindings, {
            { { rhi::ShaderType::Pixel,  "g_texture" }, m_floor_buffers_ptr->GetTexture().GetResourceView() },
        }, frame.index);
        final_floor_binds.scene_uniforms_binding_ptr = &final_floor_binds.program_bindings.Get({ rhi::ShaderType::Pixel,  "g_scene_uniforms" });
        final_floor_binds.mesh_uniforms_binding_ptr  = &final_floor_binds.program_bindings.Get({ rhi::ShaderType::Vertex, "g_mesh_uniforms"  });

        // Bind final pass RT texture and pass to the frame buffer texture and final pass.
        frame.final_pass.rt_texture  = frame.screen_texture;
        frame.final_pass.render_pass = frame.screen_pass;
        
        // Create render pass and command list for final pass rendering
        frame.final_pass.cmd_list = render_cmd_queue.CreateRenderCommandList(frame.final_pass.render_pass);

        // Rendering command lists sequence
        frame.execute_cmd_list_set = rhi::CommandListSet({
            frame.shadow_pass.cmd_list.GetInterface(),
            frame.final_pass.cmd_list.GetInterface()
        }, frame.index);

When the render context is going to be released, all related resources must be released beforehand. This is done in the ShadowCubeApp::OnContextReleased callback method with a helper method ShadowCubeApp::RenderPass::Release(), which releases render pass pipeline states:

void ShadowCubeApp::OnContextReleased(gfx::Context& context)
{
    m_final_pass.Release();
    m_shadow_pass.Release();

    m_floor_buffers_ptr.reset();
    m_cube_buffers_ptr.reset();

    m_shadow_sampler = {};
    m_texture_sampler = {};
    m_shadow_pass_pattern = {};

    UserInterfaceApp::OnContextReleased(context);
}

void ShadowCubeApp::RenderPassState::Release()
{
    render_state = {};
    view_state = {};
}

Frame Rendering Cycle

The animation function bound to time-animation in the constructor of the ShadowCubeApp class is called automatically as a part of every render cycle, just before the App::Update function call. This function rotates the light position and camera in opposite directions.

ShadowCubeApp::ShadowCubeApp()
{
    ...
    GetAnimations().emplace_back(std::make_shared<Data::TimeAnimation>(std::bind(&ShadowCubeApp::Animate, this, std::placeholders::_1, std::placeholders::_2)));
}

bool ShadowCubeApp::Animate(double, double delta_seconds)
{
    m_view_camera.Rotate(m_view_camera.GetOrientation().up, static_cast<float>(delta_seconds * 360.F / 8.F));
    m_light_camera.Rotate(m_light_camera.GetOrientation().up, static_cast<float>(delta_seconds * 360.F / 4.F));
    return true;
}

ShadowCubeApp::Update() function is called before App::Render() to update shader uniforms:

  • Scene uniforms structure is created with eye and light positions calculated in the ShadowCubeApp::Animate function.
  • Cube and Floor mesh uniform structures are created separately for Final and Render passes:
    • The Shadow pass MVP matrix is calculated from the light's point of view using m_light_camera.GetViewProjMatrix(), and the shadow-MVPx matrix is not used for shadow-map rendering, so it is set to a zero matrix.
    • The Final pass MVP matrix is calculated from the observer's point of view using m_view_camera.GetViewProjMatrix(). The shadow-MVPx matrix is used to calculate current pixel coordinates in the shadow-map texture, so we use the MVP matrix used during the shadow pass rendering multiplied by the coordinates transformation matrix to convert from homogeneous [-1, 1] to texture coordinates [0,1].

All uniforms are set directly to program argument binding with rhi::ProgramArgumentBinding::SetRootConstant(...) method.

bool ShadowCubeApp::Update()
{
    if (!UserInterfaceApp::Update())
        return false;

    const hlslpp::SceneUniforms scene_uniforms{
        hlslpp::float4(m_view_camera.GetOrientation().eye, 1.F), // eye_position
        hlslpp::float4(m_light_camera.GetOrientation().eye, 1.F) // light_position
    };
    const rhi::RootConstant scene_uniforms_constant(scene_uniforms);

    // Prepare homogenous [-1,1] to texture [0,1] coordinates transformation matrix
    static const hlslpp::float4x4 s_homogen_to_texture_coords_matrix = hlslpp::mul(
        hlslpp::float4x4::scale(0.5F, -0.5F, 1.F),
        hlslpp::float4x4::translation(0.5F, 0.5F, 0.F)
    );

    const hlslpp::float4x4 scale_matrix = hlslpp::float4x4::scale(15.F);
    const hlslpp::float4x4 cube_model_matrix = hlslpp::mul(hlslpp::float4x4::translation(0.F, 0.5F, 0.F), scale_matrix);

    const ShadowCubeFrame& frame = GetCurrentFrame();

    // Update Cube uniforms
    const hlslpp::MeshUniforms final_cube_uniforms{
        hlslpp::transpose(cube_model_matrix),
        hlslpp::transpose(hlslpp::mul(cube_model_matrix, m_view_camera.GetViewProjMatrix())),
        hlslpp::transpose(hlslpp::mul(hlslpp::mul(cube_model_matrix, m_light_camera.GetViewProjMatrix()), s_homogen_to_texture_coords_matrix))
    };
    const hlslpp::MeshUniforms shadow_cube_uniforms{
        hlslpp::transpose(cube_model_matrix),
        hlslpp::transpose(hlslpp::mul(cube_model_matrix, m_light_camera.GetViewProjMatrix())),
        hlslpp::float4x4()
    };
    frame.final_pass.cube_bindings.scene_uniforms_binding_ptr->SetRootConstant(scene_uniforms_constant);
    frame.final_pass.cube_bindings.mesh_uniforms_binding_ptr->SetRootConstant(rhi::RootConstant(final_cube_uniforms));
    frame.shadow_pass.cube_bindings.mesh_uniforms_binding_ptr->SetRootConstant(rhi::RootConstant(shadow_cube_uniforms));

    // Update Floor uniforms
    const hlslpp::MeshUniforms final_floor_uniforms{
        hlslpp::transpose(scale_matrix),
        hlslpp::transpose(hlslpp::mul(scale_matrix, m_view_camera.GetViewProjMatrix())),
        hlslpp::transpose(hlslpp::mul(hlslpp::mul(scale_matrix, m_light_camera.GetViewProjMatrix()), s_homogen_to_texture_coords_matrix))
    };
    const hlslpp::MeshUniforms shadow_floor_uniforms{
        hlslpp::transpose(scale_matrix),
        hlslpp::transpose(hlslpp::mul(scale_matrix, m_light_camera.GetViewProjMatrix())),
        hlslpp::float4x4()
    };
    frame.final_pass.floor_bindings.scene_uniforms_binding_ptr->SetRootConstant(scene_uniforms_constant);
    frame.final_pass.floor_bindings.mesh_uniforms_binding_ptr->SetRootConstant(rhi::RootConstant(final_floor_uniforms));
    frame.shadow_pass.floor_bindings.mesh_uniforms_binding_ptr->SetRootConstant(rhi::RootConstant(shadow_floor_uniforms));
    
    return true;
}

Scene rendering is done in the ShadowCubeApp::Render() method in three steps:

  1. Shadow pass rendering commands are encoded with the ShadowCubeApp::RenderScene(...) method for the current scene using the already configured shadow render pass bound to the shadow render command list and shadow-pass uniforms.
  2. Final pass rendering commands are encoded with the ShadowCubeApp::RenderScene(...) method for the same scene using the already configured final render pass bound to the final render command list and final-pass uniforms.
  3. Shadow and final pass rendering command lists are sent for execution to the GPU using the render command queue from the context, and the frame present is scheduled.
bool ShadowCubeApp::Render()
{
    if (!UserInterfaceApp::Render())
        return false;

    // Record commands for shadow & final render passes
    const ShadowCubeFrame& frame = GetCurrentFrame();
    RenderScene(m_shadow_pass, frame.shadow_pass);
    RenderScene(m_final_pass, frame.final_pass);

    // Execute rendering commands and present frame to screen
    GetRenderContext().GetRenderCommandKit().GetQueue().Execute(frame.execute_cmd_list_set);
    GetRenderContext().Present();
    
    return true;
}

Scene rendering commands encoding is done similarly for both shadow and render passes:

  1. Render command list is reset with state taken from render pass resources and already configured debug group description.
  2. View state is set with viewports and scissor rects.
  3. Cube and floor meshes drawing commands are encoded using TexturedMeshBuffers<UniformsType>::Draw(...) method which does the following:
    1. Sets program bindings to resources.
    2. Sets vertex buffer to draw.
    3. Encodes DrawIndexed command for a given mesh subset.
    4. Renders Methane application overlay as part of the final pass only using Graphics::App::RenderOverlay(...) method from the base application class.
    5. Commits the command list, making it ready for execution.
void ShadowCubeApp::RenderScene(const RenderPassState& render_pass, const ShadowCubeFrame::PassResources& render_pass_resources) const
{
    const rhi::RenderCommandList& cmd_list = render_pass_resources.cmd_list;

    // Reset command list with initial rendering state
    cmd_list.ResetWithState(render_pass.render_state, &render_pass.debug_group);
    cmd_list.SetViewState(render_pass.view_state);

    // Draw scene with cube and floor
    m_cube_buffers_ptr->Draw(cmd_list, render_pass_resources.cube_bindings.program_bindings);
    m_floor_buffers_ptr->Draw(cmd_list, render_pass_resources.floor_bindings.program_bindings);

    if (render_pass.is_final_pass)
    {
        RenderOverlay(cmd_list);
    }

    cmd_list.Commit();
}

Graphics render loop is started from main(...) entry function using GraphicsApp::Run(...) method which is also parsing command line arguments.

int main(int argc, const char* argv[])
{
    return ShadowCubeApp().Run({ argc, argv });
}

Shadow Cube Shaders

HLSL 6 shaders Shaders/ShadowCube.hlsl implement both shadow pass rendering and final pass with Phong lighting, texturing, and shadow map sampling all in one source file with the help of #ifdef ... #endif pre-processor guards. These code blocks are enabled with macro-definitions passed to the shader compiler:

  • ENABLE_TEXTURING macro-definition:
    • Adds texcoord vector to VSInput and PSInput argument structures; enables code for passing texture coordinates from vertex to pixel shader with interpolation.
    • Adds texture g_texture along with sampler g_texture_sampler and enables code path for its sampling in pixel shader CubePS.
  • ENABLE_SHADOWS macro-definition:
    • Adds shadow_position vector to PSInput argument structure and enables code path to calculate it in vertex shader CubeVS.
    • Adds shadow_mvpx_matrix matrix to MeshUniforms structure of g_mesh_uniforms buffer.
    • Adds shadow-map texture g_shadow_map along with shadow-map sampler g_shadow_sampler and enables code path for shadow map sampling in pixel shader CubePS.
#include "ShadowCubeUniforms.h"
#include "../../Common/Shaders/Primitives.hlsl"

struct VSInput
{
    float3 position         : POSITION;
    float3 normal           : NORMAL;
#ifdef ENABLE_TEXTURING
    float2 texcoord         : TEXCOORD;
#endif
};

struct PSInput
{
    float4 position         : SV_POSITION;
    float3 world_position   : POSITION0;
    float3 world_normal     : NORMAL;
#ifdef ENABLE_SHADOWS
    float4 shadow_position  : POSITION1;
#endif
#ifdef ENABLE_TEXTURING
    float2 texcoord         : TEXCOORD;
#endif
};

ConstantBuffer<Constants>     g_constants       : register(b0, META_ARG_CONSTANT);
ConstantBuffer<SceneUniforms> g_scene_uniforms  : register(b1, META_ARG_FRAME_CONSTANT);
ConstantBuffer<MeshUniforms>  g_mesh_uniforms   : register(b2, META_ARG_MUTABLE);

#ifdef ENABLE_SHADOWS
Texture2D    g_shadow_map      : register(t0, META_ARG_FRAME_CONSTANT);
SamplerState g_shadow_sampler  : register(s0, META_ARG_CONSTANT);
#endif

#ifdef ENABLE_TEXTURING
Texture2D    g_texture         : register(t1, META_ARG_MUTABLE);
SamplerState g_texture_sampler : register(s1, META_ARG_CONSTANT);
#endif

PSInput CubeVS(VSInput input)
{
    const float4 position   = float4(input.position, 1.0F);

    PSInput output;
    output.position         = mul(position, g_mesh_uniforms.mvp_matrix);
    output.world_position   = mul(position, g_mesh_uniforms.model_matrix).xyz;
    output.world_normal     = normalize(mul(float4(input.normal, 0.0), g_mesh_uniforms.model_matrix).xyz);
#ifdef ENABLE_SHADOWS
    output.shadow_position  = mul(position, g_mesh_uniforms.shadow_mvpx_matrix);
#endif
#ifdef ENABLE_TEXTURING
    output.texcoord         = input.texcoord;
#endif

    return output;
}

float4 CubePS(PSInput input) : SV_TARGET
{
    const float3 fragment_to_light             = normalize(g_scene_uniforms.light_position.xyz - input.world_position);
    const float3 fragment_to_eye               = normalize(g_scene_uniforms.eye_position.xyz - input.world_position);
    const float3 light_reflected_from_fragment = reflect(-fragment_to_light, input.world_normal);

#ifdef ENABLE_SHADOWS
    const float3 light_proj_pos = input.shadow_position.xyz / input.shadow_position.w;
    const float  current_depth  = light_proj_pos.z - 0.0001F;
    const float  shadow_depth   = g_shadow_map.Sample(g_shadow_sampler, light_proj_pos.xy).r;
    const float  shadow_ratio   = current_depth > shadow_depth ? 1.0F : 0.0F;
#else
    const float  shadow_ratio   = 0.F;
#endif

#ifdef ENABLE_TEXTURING
    const float4 texel_color    = g_texture.Sample(g_texture_sampler, input.texcoord);
#else
    const float4 texel_color    = { 0.8F, 0.8F, 0.8F, 1.F };
#endif

    const float4 ambient_color  = texel_color * g_constants.light_ambient_factor;
    const float4 base_color     = texel_color * g_constants.light_color * g_constants.light_power;

    const float  distance       = length(g_scene_uniforms.light_position.xyz - input.world_position);
    const float  diffuse_part   = clamp(dot(fragment_to_light, input.world_normal), 0.0, 1.0);
    const float4 diffuse_color  = base_color * diffuse_part / (distance * distance);

    const float  specular_part  = pow(clamp(dot(fragment_to_eye, light_reflected_from_fragment), 0.0, 1.0), g_constants.light_specular_factor);
    const float4 specular_color = base_color * specular_part / (distance * distance);

    return ColorLinearToSrgb(ambient_color + (1.F - shadow_ratio) * (diffuse_color + specular_color));
}

CMake Build Configuration

Shaders are compiled at build time and added as byte code to the application's embedded resources. Note that the vertex shader CubeVS is built twice with a different set of macro definitions: one instance is used for the shadow pass, and the other is for the final pass rendering. Texture images are also added to the application's embedded resources.

include(MethaneApplications)
include(MethaneShaders)
include(MethaneResources)

add_methane_application(
    TARGET MethaneShadowCube
    NAME "Methane Shadow Cube"
    DESCRIPTION "Tutorial demonstrating shadow and final render passes done with Methane Kit."
    INSTALL_DIR "Apps"
    SOURCES
        ShadowCubeApp.h
        ShadowCubeApp.cpp
        Shaders/ShadowCubeUniforms.h
)

set(TEXTURES_DIR ${RESOURCES_DIR}/Textures)
list(APPEND TEXTURES
    ${TEXTURES_DIR}/MethaneBubbles.jpg
    ${TEXTURES_DIR}/MarbleWhite.jpg
)
add_methane_embedded_textures(MethaneShadowCube "${TEXTURES_DIR}" "${TEXTURES}")

add_methane_shaders_source(
    TARGET MethaneShadowCube
    SOURCE Shaders/ShadowCube.hlsl
    VERSION 6_0
    TYPES
        frag=CubePS:ENABLE_SHADOWS,ENABLE_TEXTURING
        vert=CubeVS:ENABLE_SHADOWS,ENABLE_TEXTURING
        vert=CubeVS:ENABLE_TEXTURING
)

add_methane_shaders_library(MethaneShadowCube)

target_link_libraries(MethaneShadowCube
    PRIVATE
    MethaneAppsCommon
)

Continue learning

Continue learning Methane Graphics programming in the next tutorial Typography, which is demonstrating text rendering using dynamic font atlas textures.