-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathPFNet.py
288 lines (236 loc) · 11.3 KB
/
PFNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
@Time : 2021/7/6 14:23
@Author : Haiyang Mei
@E-mail : [email protected]
@Project : CVPR2021_PFNet
@File : PFNet.py
@Function: Focus and Exploration Network
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import backbone.resnet.resnet as resnet
###################################################################
# ################## Channel Attention Block ######################
###################################################################
class CA_Block(nn.Module):
def __init__(self, in_dim):
super(CA_Block, self).__init__()
self.chanel_in = in_dim
self.gamma = nn.Parameter(torch.ones(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps (B X C X H X W)
returns :
out : channel attentive features
"""
m_batchsize, C, height, width = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = x.view(m_batchsize, C, -1)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out + x
return out
###################################################################
# ################## Spatial Attention Block ######################
###################################################################
class SA_Block(nn.Module):
def __init__(self, in_dim):
super(SA_Block, self).__init__()
self.chanel_in = in_dim
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.ones(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps (B X C X H X W)
returns :
out : spatial attentive features
"""
m_batchsize, C, height, width = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out + x
return out
###################################################################
# ################## Context Exploration Block ####################
###################################################################
class Context_Exploration_Block(nn.Module):
def __init__(self, input_channels):
super(Context_Exploration_Block, self).__init__()
self.input_channels = input_channels
self.channels_single = int(input_channels / 4)
self.p1_channel_reduction = nn.Sequential(
nn.Conv2d(self.input_channels, self.channels_single, 1, 1, 0),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p2_channel_reduction = nn.Sequential(
nn.Conv2d(self.input_channels, self.channels_single, 1, 1, 0),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p3_channel_reduction = nn.Sequential(
nn.Conv2d(self.input_channels, self.channels_single, 1, 1, 0),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p4_channel_reduction = nn.Sequential(
nn.Conv2d(self.input_channels, self.channels_single, 1, 1, 0),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p1 = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, 1, 1, 0),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p1_dc = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, kernel_size=3, stride=1, padding=1, dilation=1),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p2 = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, 3, 1, 1),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p2_dc = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, kernel_size=3, stride=1, padding=2, dilation=2),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p3 = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, 5, 1, 2),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p3_dc = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, kernel_size=3, stride=1, padding=4, dilation=4),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p4 = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, 7, 1, 3),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.p4_dc = nn.Sequential(
nn.Conv2d(self.channels_single, self.channels_single, kernel_size=3, stride=1, padding=8, dilation=8),
nn.BatchNorm2d(self.channels_single), nn.ReLU())
self.fusion = nn.Sequential(nn.Conv2d(self.input_channels, self.input_channels, 1, 1, 0),
nn.BatchNorm2d(self.input_channels), nn.ReLU())
def forward(self, x):
p1_input = self.p1_channel_reduction(x)
p1 = self.p1(p1_input)
p1_dc = self.p1_dc(p1)
p2_input = self.p2_channel_reduction(x) + p1_dc
p2 = self.p2(p2_input)
p2_dc = self.p2_dc(p2)
p3_input = self.p3_channel_reduction(x) + p2_dc
p3 = self.p3(p3_input)
p3_dc = self.p3_dc(p3)
p4_input = self.p4_channel_reduction(x) + p3_dc
p4 = self.p4(p4_input)
p4_dc = self.p4_dc(p4)
ce = self.fusion(torch.cat((p1_dc, p2_dc, p3_dc, p4_dc), 1))
return ce
###################################################################
# ##################### Positioning Module ########################
###################################################################
class Positioning(nn.Module):
def __init__(self, channel):
super(Positioning, self).__init__()
self.channel = channel
self.cab = CA_Block(self.channel)
self.sab = SA_Block(self.channel)
self.map = nn.Conv2d(self.channel, 1, 7, 1, 3)
def forward(self, x):
cab = self.cab(x)
sab = self.sab(cab)
map = self.map(sab)
return sab, map
###################################################################
# ######################## Focus Module ###########################
###################################################################
class Focus(nn.Module):
def __init__(self, channel1, channel2):
super(Focus, self).__init__()
self.channel1 = channel1
self.channel2 = channel2
self.up = nn.Sequential(nn.Conv2d(self.channel2, self.channel1, 7, 1, 3),
nn.BatchNorm2d(self.channel1), nn.ReLU(), nn.UpsamplingBilinear2d(scale_factor=2))
self.input_map = nn.Sequential(nn.UpsamplingBilinear2d(scale_factor=2), nn.Sigmoid())
self.output_map = nn.Conv2d(self.channel1, 1, 7, 1, 3)
self.fp = Context_Exploration_Block(self.channel1)
self.fn = Context_Exploration_Block(self.channel1)
self.alpha = nn.Parameter(torch.ones(1))
self.beta = nn.Parameter(torch.ones(1))
self.bn1 = nn.BatchNorm2d(self.channel1)
self.relu1 = nn.ReLU()
self.bn2 = nn.BatchNorm2d(self.channel1)
self.relu2 = nn.ReLU()
def forward(self, x, y, in_map):
# x; current-level features
# y: higher-level features
# in_map: higher-level prediction
up = self.up(y)
input_map = self.input_map(in_map)
f_feature = x * input_map
b_feature = x * (1 - input_map)
fp = self.fp(f_feature)
fn = self.fn(b_feature)
refine1 = up - (self.alpha * fp)
refine1 = self.bn1(refine1)
refine1 = self.relu1(refine1)
refine2 = refine1 + (self.beta * fn)
refine2 = self.bn2(refine2)
refine2 = self.relu2(refine2)
output_map = self.output_map(refine2)
return refine2, output_map
###################################################################
# ########################## NETWORK ##############################
###################################################################
class PFNet(nn.Module):
def __init__(self, backbone_path=None):
super(PFNet, self).__init__()
# params
# backbone
resnet50 = resnet.resnet50(backbone_path)
self.layer0 = nn.Sequential(resnet50.conv1, resnet50.bn1, resnet50.relu)
self.layer1 = nn.Sequential(resnet50.maxpool, resnet50.layer1)
self.layer2 = resnet50.layer2
self.layer3 = resnet50.layer3
self.layer4 = resnet50.layer4
# channel reduction
self.cr4 = nn.Sequential(nn.Conv2d(2048, 512, 3, 1, 1), nn.BatchNorm2d(512), nn.ReLU())
self.cr3 = nn.Sequential(nn.Conv2d(1024, 256, 3, 1, 1), nn.BatchNorm2d(256), nn.ReLU())
self.cr2 = nn.Sequential(nn.Conv2d(512, 128, 3, 1, 1), nn.BatchNorm2d(128), nn.ReLU())
self.cr1 = nn.Sequential(nn.Conv2d(256, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU())
# positioning
self.positioning = Positioning(512)
# focus
self.focus3 = Focus(256, 512)
self.focus2 = Focus(128, 256)
self.focus1 = Focus(64, 128)
for m in self.modules():
if isinstance(m, nn.ReLU):
m.inplace = True
def forward(self, x):
# x: [batch_size, channel=3, h, w]
layer0 = self.layer0(x) # [-1, 64, h/2, w/2]
layer1 = self.layer1(layer0) # [-1, 256, h/4, w/4]
layer2 = self.layer2(layer1) # [-1, 512, h/8, w/8]
layer3 = self.layer3(layer2) # [-1, 1024, h/16, w/16]
layer4 = self.layer4(layer3) # [-1, 2048, h/32, w/32]
# channel reduction
cr4 = self.cr4(layer4)
cr3 = self.cr3(layer3)
cr2 = self.cr2(layer2)
cr1 = self.cr1(layer1)
# positioning
positioning, predict4 = self.positioning(cr4)
# focus
focus3, predict3 = self.focus3(cr3, positioning, predict4)
focus2, predict2 = self.focus2(cr2, focus3, predict3)
focus1, predict1 = self.focus1(cr1, focus2, predict2)
# rescale
predict4 = F.interpolate(predict4, size=x.size()[2:], mode='bilinear', align_corners=True)
predict3 = F.interpolate(predict3, size=x.size()[2:], mode='bilinear', align_corners=True)
predict2 = F.interpolate(predict2, size=x.size()[2:], mode='bilinear', align_corners=True)
predict1 = F.interpolate(predict1, size=x.size()[2:], mode='bilinear', align_corners=True)
if self.training:
return predict4, predict3, predict2, predict1
return torch.sigmoid(predict4), torch.sigmoid(predict3), torch.sigmoid(predict2), torch.sigmoid(
predict1)