diff --git a/articles/getting_started.html b/articles/getting_started.html index 63eac9c..f128738 100644 --- a/articles/getting_started.html +++ b/articles/getting_started.html @@ -84,7 +84,7 @@
vignettes/getting_started.Rmd
getting_started.Rmd
We can now visualize local_outliers
vs one of the QC
metrics, sum_log2
, with help from the escheR
package.
utils::sessionInfo()
-#> R version 4.3.2 (2023-10-31)
+#> R version 4.3.3 (2024-02-29)
#> Platform: x86_64-pc-linux-gnu (64-bit)
-#> Running under: Ubuntu 22.04.3 LTS
+#> Running under: Ubuntu 22.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
@@ -224,70 +230,69 @@ Session information#>
#> other attached packages:
#> [1] ggpubr_0.6.0 escheR_1.2.0
-#> [3] ggplot2_3.4.4 STexampleData_1.10.0
+#> [3] ggplot2_3.5.0 STexampleData_1.10.1
#> [5] SpatialExperiment_1.12.0 SingleCellExperiment_1.24.0
#> [7] SummarizedExperiment_1.32.0 Biobase_2.62.0
-#> [9] GenomicRanges_1.54.1 GenomeInfoDb_1.38.6
+#> [9] GenomicRanges_1.54.1 GenomeInfoDb_1.38.8
#> [11] IRanges_2.36.0 S4Vectors_0.40.2
#> [13] MatrixGenerics_1.14.0 matrixStats_1.2.0
#> [15] ExperimentHub_2.10.0 AnnotationHub_3.10.0
-#> [17] BiocFileCache_2.10.1 dbplyr_2.4.0
+#> [17] BiocFileCache_2.10.1 dbplyr_2.5.0
#> [19] BiocGenerics_0.48.1 SpotSweeper_0.99.1
#>
#> loaded via a namespace (and not attached):
-#> [1] DBI_1.2.1 bitops_1.0-7
+#> [1] DBI_1.2.2 bitops_1.0-7
#> [3] rlang_1.1.3 magrittr_2.0.3
-#> [5] compiler_4.3.2 RSQLite_2.3.5
+#> [5] compiler_4.3.3 RSQLite_2.3.5
#> [7] DelayedMatrixStats_1.24.0 png_0.1-8
-#> [9] systemfonts_1.0.5 vctrs_0.6.5
-#> [11] stringr_1.5.1 pkgconfig_2.0.3
-#> [13] crayon_1.5.2 fastmap_1.1.1
-#> [15] backports_1.4.1 magick_2.8.2
-#> [17] XVector_0.42.0 ellipsis_0.3.2
-#> [19] labeling_0.4.3 scuttle_1.12.0
-#> [21] utf8_1.2.4 promises_1.2.1
-#> [23] rmarkdown_2.25 ragg_1.2.7
-#> [25] purrr_1.0.2 bit_4.0.5
-#> [27] xfun_0.42 beachmat_2.18.0
-#> [29] zlibbioc_1.48.0 cachem_1.0.8
-#> [31] jsonlite_1.8.8 blob_1.2.4
-#> [33] highr_0.10 later_1.3.2
-#> [35] DelayedArray_0.28.0 BiocParallel_1.36.0
-#> [37] interactiveDisplayBase_1.40.0 broom_1.0.5
-#> [39] parallel_4.3.2 R6_2.5.1
-#> [41] bslib_0.6.1 stringi_1.8.3
-#> [43] car_3.1-2 jquerylib_0.1.4
-#> [45] Rcpp_1.0.12 knitr_1.45
-#> [47] httpuv_1.6.14 Matrix_1.6-1.1
-#> [49] tidyselect_1.2.0 abind_1.4-5
-#> [51] yaml_2.3.8 codetools_0.2-19
-#> [53] curl_5.2.0 lattice_0.21-9
-#> [55] tibble_3.2.1 shiny_1.8.0
-#> [57] withr_3.0.0 KEGGREST_1.42.0
-#> [59] evaluate_0.23 desc_1.4.3
-#> [61] Biostrings_2.70.2 pillar_1.9.0
-#> [63] BiocManager_1.30.22 filelock_1.0.3
-#> [65] carData_3.0-5 generics_0.1.3
-#> [67] dbscan_1.1-12 RCurl_1.98-1.14
-#> [69] BiocVersion_3.18.1 munsell_0.5.0
-#> [71] scales_1.3.0 sparseMatrixStats_1.14.0
-#> [73] xtable_1.8-4 glue_1.7.0
-#> [75] tools_4.3.2 BiocNeighbors_1.20.2
-#> [77] ggsignif_0.6.4 fs_1.6.3
-#> [79] cowplot_1.1.3 grid_4.3.2
-#> [81] tidyr_1.3.1 colorspace_2.1-0
-#> [83] AnnotationDbi_1.64.1 GenomeInfoDbData_1.2.11
-#> [85] cli_3.6.2 rappdirs_0.3.3
-#> [87] textshaping_0.3.7 fansi_1.0.6
-#> [89] viridisLite_0.4.2 S4Arrays_1.2.0
-#> [91] dplyr_1.1.4 gtable_0.3.4
-#> [93] rstatix_0.7.2 sass_0.4.8
-#> [95] digest_0.6.34 SparseArray_1.2.4
-#> [97] farver_2.1.1 rjson_0.2.21
-#> [99] memoise_2.0.1 htmltools_0.5.7
-#> [101] pkgdown_2.0.7 lifecycle_1.0.4
-#> [103] httr_1.4.7 mime_0.12
-#> [105] bit64_4.0.5 MASS_7.3-60
+#> [9] systemfonts_1.0.6 vctrs_0.6.5
+#> [11] pkgconfig_2.0.3 crayon_1.5.2
+#> [13] fastmap_1.1.1 backports_1.4.1
+#> [15] magick_2.8.3 XVector_0.42.0
+#> [17] ellipsis_0.3.2 labeling_0.4.3
+#> [19] scuttle_1.12.0 utf8_1.2.4
+#> [21] promises_1.2.1 rmarkdown_2.26
+#> [23] ragg_1.3.0 purrr_1.0.2
+#> [25] bit_4.0.5 xfun_0.42
+#> [27] beachmat_2.18.1 zlibbioc_1.48.2
+#> [29] cachem_1.0.8 jsonlite_1.8.8
+#> [31] blob_1.2.4 highr_0.10
+#> [33] later_1.3.2 DelayedArray_0.28.0
+#> [35] BiocParallel_1.36.0 interactiveDisplayBase_1.40.0
+#> [37] broom_1.0.5 parallel_4.3.3
+#> [39] R6_2.5.1 bslib_0.6.1
+#> [41] car_3.1-2 jquerylib_0.1.4
+#> [43] Rcpp_1.0.12 knitr_1.45
+#> [45] httpuv_1.6.14 Matrix_1.6-5
+#> [47] tidyselect_1.2.1 abind_1.4-5
+#> [49] yaml_2.3.8 codetools_0.2-19
+#> [51] curl_5.2.1 lattice_0.22-5
+#> [53] tibble_3.2.1 withr_3.0.0
+#> [55] KEGGREST_1.42.0 shiny_1.8.0
+#> [57] evaluate_0.23 desc_1.4.3
+#> [59] Biostrings_2.70.3 pillar_1.9.0
+#> [61] BiocManager_1.30.22 filelock_1.0.3
+#> [63] carData_3.0-5 generics_0.1.3
+#> [65] RCurl_1.98-1.14 BiocVersion_3.18.1
+#> [67] sparseMatrixStats_1.14.0 munsell_0.5.0
+#> [69] scales_1.3.0 xtable_1.8-4
+#> [71] glue_1.7.0 tools_4.3.3
+#> [73] BiocNeighbors_1.20.2 ggsignif_0.6.4
+#> [75] fs_1.6.3 cowplot_1.1.3
+#> [77] grid_4.3.3 tidyr_1.3.1
+#> [79] AnnotationDbi_1.64.1 colorspace_2.1-0
+#> [81] GenomeInfoDbData_1.2.11 cli_3.6.2
+#> [83] rappdirs_0.3.3 textshaping_0.3.7
+#> [85] fansi_1.0.6 viridisLite_0.4.2
+#> [87] S4Arrays_1.2.1 dplyr_1.1.4
+#> [89] gtable_0.3.4 rstatix_0.7.2
+#> [91] sass_0.4.9 digest_0.6.35
+#> [93] SparseArray_1.2.4 farver_2.1.1
+#> [95] rjson_0.2.21 memoise_2.0.1
+#> [97] htmltools_0.5.7 pkgdown_2.0.7
+#> [99] lifecycle_1.0.4 httr_1.4.7
+#> [101] mime_0.12 bit64_4.0.5
+#> [103] MASS_7.3-60.0.1
diff --git a/articles/getting_started_files/figure-html/local_outlier_plot-1.png b/articles/getting_started_files/figure-html/local_outlier_plot-1.png
index de37f45..9581314 100644
Binary files a/articles/getting_started_files/figure-html/local_outlier_plot-1.png and b/articles/getting_started_files/figure-html/local_outlier_plot-1.png differ
diff --git a/index.html b/index.html
index dc7ffcc..b83ed1f 100644
--- a/index.html
+++ b/index.html
@@ -5,14 +5,26 @@
-
-This function detects local outliers based on k-nearest neighbors based on either a univariate -(z-score thresholds per QC metrics) or multivariate approach (Local Outlier Factor).
+This function detects local outliers in spatial transcriptomics data based on standard +quality control metrics, such as library size, unique genes, and mitochondrial ratio. +Local outliers are defined as spots with low/high quality metrics compared to their +surrounding neighbors, based on a modified z-score statistic.
localOutliers(
spe,
+ metric = "detected",
+ direction = "lower",
n_neighbors = 36,
- features = c("sum_umi", "sum_gene", "expr_chrM_ratio"),
- method = "multivariate",
samples = "sample_id",
- log2 = TRUE,
- cutoff = 2.58,
- scale = TRUE,
- minPts = 20,
- data_output = FALSE,
- n_cores = 1
+ log = TRUE,
+ cutoff = 3
)
SpatialExperiment object with the following columns in colData: sample_id, sum_umi, sum_gene
SpatialExperiment object
Number of nearest neighbors to use for outlier detection
colData QC metric to use for outlier detection
Vector of features to use for outlier detection
Direction of outlier detection (higher, lower, or both)
Method to use for outlier detection (univariate or multivariate)
Number of nearest neighbors to use for outlier detection
Column name in colData to use for sample IDs
Logical indicating whether to log2 transform the features
Logical indicating whether to log2 transform the features (default is TRUE)
Cutoff for outlier detection
Logical indicating whether to scale the features for LOF calculation (recommended)
Minimum number of points (nearest neighbors) to use for LOF calculation
Logical indicating whether to output the z-scores for each feature
Number of cores to use for parallelization in the findKNN function
Cutoff for outlier detection (default is 3)
SpatialExperiment object with updated colData
+SpatialExperiment object with updated colData containing outputs