From a40886308222b0ce995280163b7abbe58e0f07b4 Mon Sep 17 00:00:00 2001 From: Michael Totty Date: Mon, 8 Apr 2024 18:05:42 -0400 Subject: [PATCH] updated vignette with new plotQC functions --- vignettes/getting_started.Rmd | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/vignettes/getting_started.Rmd b/vignettes/getting_started.Rmd index 49e54d1..2f5d06b 100644 --- a/vignettes/getting_started.Rmd +++ b/vignettes/getting_started.Rmd @@ -159,29 +159,29 @@ library(escheR) library(ggpubr) # library size -p1 <- plotOutliers(spe, - metric = "sum_log2", +p1 <- plotQC(spe, + metric = "sum_log", outliers = "sum_outliers", point_size = 1.1 ) + ggtitle("Library Size") # unique genes -p2 <- plotOutliers(spe, - metric = "detected_log2", +p2 <- plotQC(spe, + metric = "detected_log", outliers = "detected_outliers", point_size = 1.1 ) + ggtitle("Unique Genes") # mitochondrial percent -p3 <- plotOutliers(spe, +p3 <- plotQC(spe, metric = "subsets_Mito_percent", outliers = "subsets_Mito_percent_outliers", point_size = 1.1 ) + ggtitle("Mitochondrial Percent") # all local outliers -p4 <- plotOutliers(spe, - metric = "sum_log2", +p4 <- plotQC(spe, + metric = "sum_log", outliers = "local_outliers", point_size = 1.1, stroke = 0.75 ) + ggtitle("All Local Outliers") @@ -214,27 +214,27 @@ colnames(colData(spe)) Technical artifacts can commonly be visualized by standard QC metrics, including library size, unique genes, or mitochondrial percentage. We can first visualize -the technical artifacts using the `plotOutliers` function. This function plots +the technical artifacts using the `plotQC` function. This function plots the Visium spots with the specified QC metric.We'll then again arrange these plots using `ggpubr::arrange`. ```{r artifact_QC_plots} # library size -p1 <- plotOutliers(spe, +p1 <- plotQC(spe, metric = "sum_umi", outliers = NULL, point_size = 1.1 ) + ggtitle("Library Size") # unique genes -p2 <- plotOutliers(spe, +p2 <- plotQC(spe, metric = "sum_gene", outliers = NULL, point_size = 1.1 ) + ggtitle("Unique Genes") # mitochondrial percent -p3 <- plotOutliers(spe, +p3 <- plotQC(spe, metric = "expr_chrM_ratio", outliers = NULL, point_size = 1.1 ) + @@ -276,11 +276,11 @@ colnames(colData(spe)) ### Visualizing artifacts We can visualize the artifacts using the `escheR` package. Here, we'll visualize -the artifacts using the `make_escheR` function and arrange these plots using +the artifacts using the `plotQC` function and arrange these plots using `ggpubr::arrange`. ```{r artifact_visualization} -plotOutliers(spe, +plotQC(spe, metric = "expr_chrM_ratio", outliers = "artifact", point_size = 1.1 ) +