-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
256 lines (207 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import argparse
import numpy as np
import random
import torch
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader
from dataset import igazeDataset, trainingSampler
from model import I3D_IGA_base, I3D_IGA_gaze, I3D_IGA_attn
from utils import get_accuracy, make_hard_decision, compute_cross_entropy, compute_gradients_gaze
import time
from datetime import timedelta
from sklearn.metrics import confusion_matrix
parser = argparse.ArgumentParser(description='igaze')
parser.add_argument('--mode', default='test', help='train | test')
parser.add_argument('--crop', type=int, default=224, help='for spatial cropping')
parser.add_argument('--trange', type=int, default=24, help='temporal range')
parser.add_argument('--stride', type=int, default=8, help='pooling stride for gaze prediction')
parser.add_argument('--b', type=int, default=1, help='batch size')
parser.add_argument('--wd', type=float, default=4e-5, help='weight decay')
parser.add_argument('--it1', type=int, default=8000, help='first decay point')
parser.add_argument('--it2', type=int, default=15000, help='second decay point')
parser.add_argument('--iters', type=int, default=18000, help='number of max iterations for training')
parser.add_argument('--lr', type=float, default=0.032, help='learning rate')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--eps', type=float, default=1000, help='epsilon for the gradient estimator')
parser.add_argument('--anneal', type=float, default=1e-3, help='anneal rate for epsilon')
parser.add_argument('--datapath', default='dataset', help='path to dataset')
parser.add_argument('--datasplit', type=int, default=1, help='data split for the cross validation')
parser.add_argument('--weight', default='weights/i3d_iga_best1_base.pt', help='path to the weight file for the base network')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--test_sparse', action='store_true', help='whether to test sparsely for fast evaluation')
def main():
global args, device
args = parser.parse_args()
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
exp_name = '%d_%d_%d_%s_%d' % (args.crop, args.trange, args.stride, time.strftime("%m-%d_%H-%M-%S"), args.seed)
if args.mode == 'test':
if os.path.isfile(args.weight):
exp_name = 'test_'+'.'.join(args.weight.split('/')[-1].split('.')[:-1])
else:
raise ValueError('unknown weight: '+args.weight)
num_action = 106
if args.mode == 'train':
dataset = igazeDataset(args.datapath, 'EGTEA', args.mode, args.datasplit, args.stride, args.trange, args.crop)
train_loader = DataLoader(dataset, num_workers=4*args.ngpu, batch_size=args.b, sampler=trainingSampler(len(dataset)))
else:
test_loader = DataLoader(igazeDataset(args.datapath, 'EGTEA', args.mode, args.datasplit, args.stride), num_workers=4, pin_memory=True)
print_args(exp_name)
model_base, model_gaze, model_attn = load_model(num_action)
optimizer = load_weights_and_set_opt(model_base, model_gaze, model_attn)
if torch.cuda.is_available():
print ('run on cuda')
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda")
if args.ngpu > 1:
model_base = torch.nn.DataParallel(model_base, device_ids=range(args.ngpu))
model_gaze = torch.nn.DataParallel(model_gaze, device_ids=range(args.ngpu))
model_attn = torch.nn.DataParallel(model_attn, device_ids=range(args.ngpu))
else:
print ('run on cpu')
device = torch.device("cpu")
model_base = model_base.to(device)
model_gaze = model_gaze.to(device)
model_attn = model_attn.to(device)
if args.mode == 'train':
train(train_loader, model_base, model_gaze, model_attn, optimizer, exp_name)
else:
test(test_loader, model_base, model_gaze, model_attn, num_action)
def load_model(num_action):
model_base = I3D_IGA_base()
model_gaze = I3D_IGA_gaze()
model_attn = I3D_IGA_attn(num_action)
return model_base, model_gaze, model_attn
def load_weights(model, weight_file):
if os.path.isfile(weight_file):
print ('loading weight file: %s' % weight_file)
weight_dict = torch.load(weight_file)
model_dict = model.state_dict()
for name, param in weight_dict.items():
if 'module' in name:
name = '.'.join(name.split('.')[1:])
if name in model_dict:
if param.size() == model_dict[name].size():
model_dict[name].copy_(param)
else:
print (' size? ' + name, param.size(), model_dict[name].size())
else:
print (' name? ' + name)
else:
print ('no weight file: %s ... start from scratch' % weight_file)
def load_weights_and_set_opt(model_base, model_gaze, model_attn):
load_weights(model_base, args.weight)
load_weights(model_gaze, args.weight.replace('base', 'gaze'))
load_weights(model_attn, args.weight.replace('base', 'attn'))
params = []
for model in [model_base, model_gaze, model_attn]:
params.append({'params': model.parameters()})
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=0.9, weight_decay=args.wd)
return optimizer
def print_args(exp_name):
print ('exp_name: %s' % exp_name)
print ('datasplit: %d' % args.datasplit)
print ('weight: %s' % args.weight)
print ('mode: %s' % args.mode)
if args.mode == 'train':
print ('ngpu: %d' % args.ngpu)
print ('b: %d' % args.b)
print ('iters: %d, %d, %d' % (args.it1, args.it2, args.iters))
print ('lr: %g' % args.lr)
print ('wd: %g' % args.wd)
print ('eps, anneal: %g, %g' % (args.eps, args.anneal))
else:
print ('test_sparse: %s' % args.test_sparse)
def adjust_lr(optimizer, step):
if step in [args.it1, args.it2]:
for opt in optimizer.param_groups:
opt['lr'] *= 0.1
def train(train_loader, model_base, model_gaze, model_attn, optimizer, exp_name):
path_output = os.path.join('output', exp_name)
if not os.path.isdir(path_output):
os.makedirs(path_output)
eps = args.eps
scale = 32
slen = args.crop//scale
tlist_y = torch.LongTensor(range(slen))
tlist_x = torch.LongTensor(range(slen))
list_idx = torch.stack(torch.meshgrid(tlist_y, tlist_x), -1).view(-1, 2)
z_pre_realized = torch.zeros((1, list_idx.shape[0], slen, slen), dtype=torch.float32, device=device)
for i, (j, k) in enumerate(list_idx):
z_pre_realized[0][i][j][k] = 1
z_pre_realized = z_pre_realized.repeat(args.b,1,1,1).view(-1,slen,slen)
start_time = time.time()
for i, (rgb, flow, pmap, label) in zip(range(1, args.iters+1), train_loader):
rgb, flow, pmap, label = rgb.to(device), flow.to(device), pmap.to(device), label.to(device)
pi, h = model_base(rgb, flow)
pi = model_gaze(pi)
k = pmap.shape[-1]//pi.shape[-1]
pmap = F.max_pool2d(pmap, kernel_size=(k,k), stride=(k,k))
loss_kl = torch.tensor(0., requires_grad=True)
idx_valid = torch.sum(pmap, dim=[2,3])>0
num_valid = idx_valid.sum()
if num_valid > 0:
pmap = pmap[idx_valid].view(num_valid, -1)
pi_valid = pi[idx_valid].view(num_valid, -1)
loss_kl = F.kl_div(F.log_softmax(pi_valid, dim=1), pmap/torch.sum(pmap, dim=1, keepdim=True), reduction='batchmean')
z_hard, pi_g = make_hard_decision(pi, device)
y, loss_cn = compute_cross_entropy(z_hard, h, model_attn, label)
loss_cn = loss_cn.mean()
gradients = compute_gradients_gaze(z_hard, h, model_attn, pi_g, label, device, eps, z_pre_realized)
loss_attn = (gradients*pi_g).mean(0).sum()
loss = loss_cn + loss_kl + loss_attn
optimizer.zero_grad()
loss.backward()
params = []
params += list(model_base.parameters())
params += list(model_gaze.parameters())
params += list(model_attn.parameters())
grad_total = clip_grad_norm_(params, 20)
optimizer.step()
adjust_lr(optimizer, i)
if i % 100 == 0:
eps = max(0.1, args.eps*np.exp(-args.anneal*i))
print ('step: [%5d/%5d], %s' % (i, args.iters, timedelta(seconds=int(time.time()-start_time))), flush=True)
if i % 500 == 0 and i >= 10000: # in this implementation, the model performs best after about 10000~15500 iterations
torch.save(model_base.state_dict(), os.path.join(path_output, '%s_%05d_base.pt' % (exp_name, i)))
torch.save(model_gaze.state_dict(), os.path.join(path_output, '%s_%05d_gaze.pt' % (exp_name, i)))
torch.save(model_attn.state_dict(), os.path.join(path_output, '%s_%05d_attn.pt' % (exp_name, i)))
def test(test_loader, model_base, model_gaze, model_attn, num_action):
model_base.eval()
model_gaze.eval()
model_attn.eval()
list_true = []
list_pred = []
start_time = time.time()
with torch.no_grad():
for i, (rgb, flow, label) in enumerate(test_loader, 1):
label = label.to(device)
len_video, height, width = rgb.shape[2:]
top, left = (height-args.crop)//2, (width-args.crop)//2
jump = args.trange
if args.test_sparse:
if len_video > args.trange*10:
jump = len_video // 10
list_start_idx = list(range(0, len_video-args.trange+1, jump))
list_y = []
for t in list_start_idx:
t_rgb = rgb[..., t:t+args.trange, top:top+args.crop, left:left+args.crop].cuda()
t_flow = flow[..., t:t+args.trange, top:top+args.crop, left:left+args.crop].cuda()
pi, h = model_base(t_rgb, t_flow)
pi = model_gaze(pi)
z_hard, pi_g = make_hard_decision(pi, device)
y = compute_cross_entropy(z_hard, h, model_attn, label)[0]
list_y.append(y)
y_avg = torch.cat(list_y, 0).mean(0, keepdim=True)
list_true.append(label.item())
list_pred.append(torch.argmax(y_avg, 1).item())
print ('step: %04d, %s' % (i, timedelta(seconds=int(time.time()-start_time))), flush=True)
mean_class_acc, acc = get_accuracy(confusion_matrix(list_true, list_pred, labels=list(range(num_action))))
print ('acc: %.2f, %.2f / %s' % (mean_class_acc, acc, timedelta(seconds=int(time.time()-start_time))), flush=True)
if __name__ == '__main__':
main()