-
Notifications
You must be signed in to change notification settings - Fork 153
/
Ladder.java
52 lines (40 loc) · 1.77 KB
/
Ladder.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package Ladder;
class Solution {
public int[] solution(int[] A, int[] B) {
// The task is to find out the number of ways
// someone can climb up a ladder of N rungs
// by ascending one or two rungs at a time.
// It is not very hard to see that
// this number is just the "Fibonacci number of order N"
// we implemented an easy dynamic programming approach
// to compute Fibonacci numbers, this will take complexity O(n)
// I use binary operators to keep track of "N modulo 2^{30}"
// otherwise. the Fibonacci numbers will cause a memory overflow (be careful~!!)
// and we are also asked to return "numbers modulo some power of 2"
int L = A.length;
// determine the "max" for Fibonacci
int max = 0;
for (int i = 0; i < L; i++) {
max = Math.max(A[i], max);
}
//max += 2; // for Fibonacci
int[] fibonacci = new int[max+1]; // plus one for "0"
// initial setting of Fibonacci (importnat)
fibonacci[0] =1;
fibonacci[1] =1;
for(int i=2; i<= max; i++){
fibonacci[i] = (fibonacci[i-1] + fibonacci[i-2]) % (1 << 30);
// we want to find the result of "a number modulo 2^P"
// if we first let the number modulo 2^Q (Q > P)
// then, modulo 2^P, the esult is the same.
// So, "we first modulo 2^30" to avoid overflow
// where, 2^30 == 1 << 30
}
// to find "results"
int[] results = new int[L];
for(int i=0; i<L; i++){
results[i] = fibonacci[A[i]] % (1 << B[i]); // where, "1 << B[i]" means 2^B[i]
}
return results;
}
}