-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTSP.R
executable file
·265 lines (244 loc) · 6.67 KB
/
TSP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#library(Rcpp)
library(parallel)
'<-'(
AcoTsp,
function(dm)
{
if(class(dm) == 'dist')
{
dm <- as.matrix(dm)
}
nums <- dim(dm)[1]
alpha <- 1
beta <- 5
Q <- 100
rho <- 0.9 # 1 - 挥发
pm <- matrix(1, nums, nums) #信息素矩阵
em <- 1 / dm #距离启发矩阵
ants <- nums #蚂蚁数量
nIter <- 100 #迭代次数
distances <- numeric(nIter) #每次迭代最小距离
minRoad <- integer(nums) #最短路
minDis <- Inf
if(nums > 50)
{
#大于50就并行计算,因为线程启动也要时间
clist <- parallel::makeCluster(parallel::detectCores(logical = FALSE))
}
'<-'(
eachIter,
function(it)
{
ants <- ceiling(nums * (1- (it / nIter))) + 10
rm <- matrix(0, nums+nums+1, ants) #每只蚂蚁的路径矩阵(每列),+nums是为了保存路径在距离矩阵中的位置和总距离
am <- matrix(TRUE, nums, ants) #每只蚂蚁(每列)的允许访问表
pmTmp <- (em ^ alpha) * (pm ^ beta) #计算转移概率用到的中间变量矩阵
starts <- sample(1:nums, ants, replace = TRUE) #为蚂蚁选择起点
rm[1,] <- starts
am[starts + (0:(ants-1) * nums)] <- FALSE
'<-'(
eachAnt,
function(k)
{
allows <- am[,k]
road <- rm[,k]
distance <- 0
'<-'(
findNext,
function(i)
{
if(i==nums-1)
{
return(which(allows))
}
n <- road[i] #当前位置
allow <- which(allows)
antPm <- pmTmp[n,allow]
antPm <- antPm / sum(antPm)
nxt <- sample(allow, 1, replace = FALSE, prob = antPm) #效果类似轮盘赌
return(nxt)
}
)
'<-'(
goNext,
function(i)
{
n <- road[i] #当前位置
if(i<nums)
{
nxt <- findNext(i)
distance <<- distance + dm[n,nxt]
road[i+1] <<- nxt
road[i+nums] <<- (ifelse(n<nxt,n,nxt)-1)*nums + ifelse(n<nxt,nxt,n) #释放信息素的位置,控制在下三角
allows[nxt] <<- FALSE
return(goNext(i+1))
}
nxt <- road[1]
distance <<- distance + dm[n,nxt]
road[i+nums] <<- (ifelse(n<nxt,n,nxt)-1)*nums + ifelse(n<nxt,nxt,n)
return(TRUE)
}
)
try(goNext(1))
road[nums+nums+1] <- distance
return(road)
}
)
if(nums > 50)
{
rm <- parallel::parSapply(clist, 1:ants, eachAnt)
}
else
{
rm <- sapply(1:ants, eachAnt)
}
wMin <- which.min(rm[nums+nums+1,])
distances[it] <<- rm[nums+nums+1,wMin]
if(minDis > rm[nums+nums+1,wMin])
{
minRoad <<- rm[1:nums,wMin]
minDis <<- rm[nums+nums+1,wMin]
}
rm[nums+nums+1,] <- Q / rm[nums+nums+1,]
pm <<- pm * rho #蒸发
apply(rm, 2, function(x) {pm[x[(nums+1):(nums+nums)]] <<- pm[x[(nums+1):(nums+nums)]] + x[nums+nums+1]})
pm <<- as.matrix(as.dist(pm))
}
)
try(sapply(1:nIter, eachIter))
plot(1:nIter, distances, 'l',xlab='iter_times',ylab='iter_distance',main='ACO-TSP')
if(nums>50)
{
parallel::stopCluster(clist)
}
cat('mindis:',minDis)
return(minRoad)
}
)
'<-'(
SaTsp,
function(dm, TS = 100, TE = 20,alpha = 0.99)
{
if(class(dm) == 'dist')
{
#浅浅验证下输入
dm <- as.matrix(dm)
}
'<-'(
interfere,
function(r)
{
#对解进行随机的扰动,随机采用不同的两种方式
if(runif(1) > 0.5)
{
#交换两座城市的顺序
k <- sample(1:nums, 2)
r[k] <- r[rev(k)]
}
else
{
#交换一段城市的顺序
k <- sort(sample(2:nums, 3))
nr <- r
r <- c(r[1:(k[1]-1)],r[k[2]:(k[3]-1)],r[k[1]:(k[2]-1)],r[(k[3]):nums])
}
return(r)
}
)
'<-'(
calDistance,
function(r)
{
#计算路程距离,作为评估解好坏的指标
tr <- integer(nums)
tr <- r[2:nums]
tr[nums] <- r[1]
return(sum(dm[((r-1)*nums + tr)]))
}
)
nums <- dim(dm)[1] #城市数量
Tp <- TS #温度
road <- sample(1:nums, nums) #随机产生路径作为初始解
dis <- calDistance(road)
displot <- numeric(floor(log(TE/TS, alpha))+10)
cout <- 1
while(Tp > TE)
{
cout <- cout + 1
#你想用这种方式也行
#cnt <- ceiling(nums*TS/Tp)
cnt <- 10
while(cnt > 0)
{
#扰动
nroad <- interfere(road)
ndis <- calDistance(nroad)
#评价新解的好坏
deta <- (ndis - dis)/dis
#模拟退火的核心公式
if(deta < 0 || exp(-Tp/deta) > runif(1))
{
dis <- ndis
road <- nroad
#cnt <- ceiling(nums*Tp/TS)
cnt <- 10
}
#十次没有获得新解就降温
cnt <- cnt - 1
}
Tp <- Tp * alpha #降温
displot[cout] <- dis
}
plot(2:cout, displot[2:cout],'l',xlab='iter_times',ylab='iter_distance',main='SA-TSP')
cat('mindis:',dis)
return(road)
}
)
'<-'(
GATSP,
function()
{
}
)
'<-'(
testAco,
function(pn=30)
{
px <- runif(pn,100,1000)
py <- runif(pn,100,1000)
pts <- matrix(c(px,py),pn,2)
road <- AcoTsp(dist(pts))
plot(c(pts[road,1], pts[road[1],1]),c(pts[road,2],pts[road[1],2]),'o',xlab='x',ylab='y')
}
)
'<-'(
testSa,
function(pn=30)
{
px <- runif(pn,100,1000)
py <- runif(pn,100,1000)
pts <- matrix(c(px,py),pn,2)
road <- SaTsp(dist(pts))
plot(c(pts[road,1], pts[road[1],1]),c(pts[road,2],pts[road[1],2]),'o')
}
)
'<-'(
compare,
function(pn=30)
{
px <- runif(pn,100,1000)
py <- runif(pn,100,1000)
pts <- matrix(c(px,py),pn,2)
ra <- AcoTsp(dist(pts))
rs <- SaTsp(dist(pts))
opar<-par(no.readonly=TRUE)
par(mfrow=c(2,2))
par(pin=c(1,1))
plot(pts[,1],pts[,2],xlab='x',ylab='y',main='Original')
plot(pts[,1],pts[,2],'o',xlab='x',ylab='y',main='Random')
plot(c(pts[ra,1], pts[ra[1],1]),c(pts[ra,2],pts[ra[1],2]),'o',xlab='x',ylab='y',main='ACO')
plot(c(pts[rs,1], pts[rs[1],1]),c(pts[rs,2],pts[rs[1],2]),'o',xlab='x',ylab='y',main='SA')
par(opar)
}
)
system.time(compare())