Skip to content

Latest commit

 

History

History
61 lines (40 loc) · 2.06 KB

README.md

File metadata and controls

61 lines (40 loc) · 2.06 KB

A Tale of Pronouns

Code associated with the paper A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for Fairer Instruction-Tuned Machine Translation.

Getting Started

Beware, the operation might break existing venv/conda environments. We recommend working on a separate environment. We conducted all our experiments with Python 3.10. To get started, install the requirements listed in requirements.txt.

pip install -r requirements.txt

Dataset

To run our code, populate the datasets folder with the following files:

  • winomt_en.txt (WinoMT)
  • test2006.de (Europarl)
  • test2006.en
  • test2006.es

These files are publicly available. If you do not know where to find them, shoot us an email.

Releases

This repository contains the following assets described in the paper:

  • human-refined GPT-3.5 translation of WinoMT professions: folder
  • human-translated seed demonstrations for few-shot learning: WIP
  • Integrated Gradient attribution scores computed on WinoMT for Flan-T5-XXL and mT0-XXL models in En-Es and En-De: dataset

Replicating Our Results

Many scripts require to specify a prompt template. See ./src/utils.py the available options.

Translating Europarl and WinoMT

./bash/translate_dataset.sh europarl-test es 0
./bash/translate_dataset.sh europarl-test de 0
./bash/translate_dataset.sh winomt es 0
./bash/translate_dataset.sh winomt de 0

Evaluating Europarl Translations

./bash/evaluate_all.sh europarl-test ./translations/europarl-test/ en es
./bash/evaluate_all.sh europarl-test ./translations/europarl-test/ en de

Evaluating WinoMT Translations

We use WinoMT's original code to evaluate delta_G, delta_S, and accuracy. We will provide a detail guide on that. Meanwhile, you can refer to the official repository.

Generating Integrated Gradients

./bash/compute_integrated_gradients.sh winomt es