-
Notifications
You must be signed in to change notification settings - Fork 2
/
AIY_simulation_iclamp.py
130 lines (82 loc) · 2.9 KB
/
AIY_simulation_iclamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
def AIY_simulation_iclamp(gAIY_scaled,s1,s2,ns):
from neuron import h,gui
import numpy
import math
from operator import add
surf=65.89e-8 # surface in cm^2 form neuromorpho AIYL
vol=7.42e-12 # total volume
L=math.sqrt(surf/math.pi)
rsoma=L*1e4
cm_uFcm2=gAIY_scaled[8]
soma=h.Section(name="soma")
soma.L=rsoma
soma.diam=rsoma
soma.cm=cm_uFcm2
soma.Ra=100
h.psection(sec=soma)
soma.insert('egl19')
soma.insert('slo1egl19')
soma.insert('nca')
soma.insert('leak')
soma.insert('slo1iso')
soma.insert('kqt1')
soma.insert('shl1')
for seg in soma:
seg.leak.gbar = gAIY_scaled[0]
seg.slo1iso.gbar = gAIY_scaled[1]
seg.kqt1.gbar=gAIY_scaled[2]
seg.egl19.gbar=gAIY_scaled[3]
seg.slo1egl19.gbar = gAIY_scaled[4]
seg.nca.gbar = gAIY_scaled[5]
seg.shl1.gbar = gAIY_scaled[6]
seg.leak.e=gAIY_scaled[7]
seg.eca=60
seg.ek=-80
stim=h.IClamp(soma(0.5))
dir(stim)
stim.delay=1000
stim.amp=10
stim.dur=5000
v_vec = h.Vector()
t_vec = h.Vector() # Time stamp vector
v_vec.record(soma(0.5)._ref_v)
t_vec.record(h._ref_t)
simdur =11000
ref_v=[]
ref_t=[]
for i in numpy.linspace(start=s1, stop=s2, num=ns):
stim.amp=i
h.tstop=simdur
h.dt=0.4
h.finitialize(-60)
h.run()
ref_t_vec=numpy.zeros_like(t_vec)
t_vec.to_python(ref_t_vec)
ref_t.append(ref_t_vec)
ref_v_vec=numpy.zeros_like(v_vec)
v_vec.to_python(ref_v_vec)
ref_v.append(ref_v_vec)
v=[]
v=numpy.array(list(ref_v))
time1=numpy.array(ref_t)
## SS VOLTAGE-CURRENT RELATION
ind=numpy.where(numpy.logical_and(time1[0]>=5990, time1[0]<=6000))
ind_max=numpy.amax(ind)
ind_min=numpy.amin(ind)
vi=numpy.mean(v[:,ind_min:ind_max],axis=1)
# PEAK VOLTAGE-CURRENT RELATION
ind2=numpy.where(numpy.logical_and(time1[0]>=1000, time1[0]<=1300))
ind2_max=numpy.amax(ind2)
ind2_min=numpy.amin(ind2)
vi_peak=numpy.amax(v[:,ind2_min:ind2_max])
vi_peak=[]
for j in range(ns):
if j<=2:
peak=numpy.amin(v[j,ind2_min:ind2_max])
else:
peak=numpy.amax(v[j,ind2_min:ind2_max])
vi_peak.append(peak)
return v, time1, vi_peak, vi