forked from yiminking/CME-CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_loader.py
executable file
·64 lines (51 loc) · 2.21 KB
/
model_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from keras.models import Sequential
from keras.layers import Activation, Dropout, Flatten, Conv2D, MaxPooling2D, Dense
from keras.layers.normalization import BatchNormalization
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.layers import Input, GlobalAveragePooling2D
from keras.models import Model
def baseline_model(pixels):
model = Sequential()
model.add(Dense(4096, activation='relu', input_shape=(pixels*pixels,)))
model.add(Dense(2048, activation='relu'))
model.add(Dense(1024, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1))
return model
def inceptionResNetV2(pixels):
# Build Xception over a custom input tensor
input_tensor = Input(shape=(pixels, pixels, 3))
base_model = InceptionResNetV2(input_tensor=input_tensor, weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = Dense(1024, activation='relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dropout(0.2)(x)
x = Dense(512, activation='relu')(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(1)(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
return model
def cnn_model(pixels):
model = Sequential()
model.add(Conv2D(64, kernel_size=(11, 11), input_shape=(pixels, pixels, 1), padding='same'))
model.add(BatchNormalization(momentum=0.7))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
model.add(Conv2D(128, kernel_size=(11, 11), padding='same'))
model.add(BatchNormalization(momentum=0.7))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
model.add(Conv2D(256, kernel_size=(11, 11), padding='same'))
model.add(BatchNormalization(momentum=0.7))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(1))
return model