-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict2.m
537 lines (427 loc) · 20.6 KB
/
Predict2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
cd 'C:\Users\mohammad\Desktop\project\images' % go to images folder to get input images
ImgList4=dir; % take a list from the current diroctory
cd .. % come back to before dir
cd 'C:\Users\mohammad\Desktop\project\masks' % go to masks folder to get mask images
Img_list2=dir; % take a list from the current diroctory
cd .. % come back to before dir
cd 'C:\Users\mohammad\Desktop\project\annotations' % go to annotations folder to get ground truth images
Img_list3=dir;% take a list from the current diroctory
cd .. % come back to before dir
n=80; %size of each block
% load TNp.mat
counter=1;
FinalImg=zeros(800,800,3);
% Features2=zeros(1,209);
%% Reading The Images
for i4=21:60
fulname4=ImgList4(i4+2).name; % because the first and second elemnts of Img_list are cd. and cd.. folders we begine with the 23th element of Img_list
cd 'C:\Users\mohammad\Desktop\project\images' % go to images folder to get input images
MainImg=imread(fulname4); % read the image
% MainImg=rgb2gray(MainImg); % convort rgb imge to gray one
MainImg=imresize(MainImg,[810 810]); % adjust the image size
[r, c]=size(MainImg);
BlockedImg=zeros(n); % initialization
cd ..
fullname2=Img_list2(i4+2).name; % because the first and second elemnts of Img_list are cd. and cd.. folders we begine with the 23th element of Img_list
cd 'C:\Users\mohammad\Desktop\project\masks' % go to masks folder to get mask images
MaskImg=imread(fullname2); % read the image
cd ..
MaskImg=imresize(MaskImg,[810 810]);
fullname3=Img_list3((2*i4)+1).name; % because the first and second elemnts of Img_list are cd. and cd.. folders we begine with the 23th element of Img_list
cd 'C:\Users\mohammad\Desktop\project\annotations'
LabeledImg=imread(fullname3); % read the image
LabeledImg=imresize(LabeledImg,[810 810]); % adjust the image size
cd ..
LabeledImg2=LabeledImg; % copy the LabeledImg
FinalImg=zeros(810,810,3); % initialization
%% Removing The Background Of Image
MaskImg=imresize(MaskImg,[810 810]);
for i1=1:r
for j1=1:c/3
if MaskImg(i1,j1,:)==1
MainImg(i1,j1,:)=0;
end
end
end
% figure();imshow(MainImg)
%% Blocking The Image Into n*n block
for i5=1:80:810
for j5=1:80:810
if i5+(n-1)<=810 && j5+(n-1)<=810
BlockedImg2=MainImg(i5:i5+(n-1),j5:j5+(n-1),:);
BlockedImg=rgb2gray(BlockedImg2);
BlockedImg=im2double(BlockedImg);
%% Extracing Features
if nnz(BlockedImg)>=200 % to prevent to enter whole black blocks
% figure();imshow(BlockedImg2)
% figure();imshow(BlockedImg)
%Chanels
HSV=rgb2hsv(BlockedImg2);
[h ,s, v] = imsplit(HSV);
R=BlockedImg2(:,:,1);
G=BlockedImg2(:,:,2);
B=BlockedImg2(:,:,3);
% Statistical Features from chanel gray
[r,c]=size(BlockedImg);
b=reshape(BlockedImg,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
SkewnessGray=t(4);% t(4)= skewness of histogram
VGray=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SGray=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KGray=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_image = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_image = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_image = max(reshape(BlockedImg,[r*c,1]));% max of the blocke
FeatuesGray=[SkewnessGray,VGray,SGray,KGray,min_image,mean_image,max_image];
% Statistical Features from chanel R
[r,c]=size(R);
b=reshape(R,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessR=t(4);% t(4)= skewness of histogram
VR=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SR=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KR=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageR = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageR = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageR = max(reshape(BlockedImg,[r*c,1]));% max of the block
[Gmag, Gdir] = imgradient(R,'prewitt');
[r,c]=size(Gmag);
b=reshape(Gmag,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessGGra=t(4);% t(4)= skewness of histogram
VGGra=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SGGra=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KGGra=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageGGra= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageGGra = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageGGra = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
sigma = 0.4;
alpha = 0.5;
GLaplacian = locallapfilt(R, sigma, alpha);
% imshow(BLaplacian);
[r,c]=size(GLaplacian);
b=reshape(GLaplacian,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessGLap=t(4);% t(4)= skewness of histogram
VGLap=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SGLap=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KGLap=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageGLap= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageGLap= mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageGLap = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
FeaturesGLap=[SkewnessGLap,VGLap,SGLap,KGLap,min_imageGLap,mean_imageGLap,max_imageGLap];
FeaturesGGra=[SkewnessGGra,VGGra,SGGra,KGGra,min_imageGGra,mean_imageGGra,max_imageGGra];
FeaturesR=[SkewnessR,VR,SR,KR,min_imageR ,mean_imageR,max_imageR];
AllFeaturesR=[FeaturesGGra,FeaturesR,FeaturesGLap];
% Statistical Features from chanel G
[r,c]=size(G);
b=reshape(G,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessG=t(4);% t(4)= skewness of histogram
VG=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SG=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KG=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageG= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageG = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageG = max(reshape(BlockedImg,[r*c,1]));% max of the block
[Gmag, Gdir] = imgradient(G,'prewitt');
[r,c]=size(Gmag);
b=reshape(Gmag,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessGGra=t(4);% t(4)= skewness of histogram
VGGra=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SGGra=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KGGra=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageGGra= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageGGra = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageGGra = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
sigma = 0.4;
alpha = 0.5;
GLaplacian = locallapfilt(G, sigma, alpha);
% imshow(BLaplacian);
[r,c]=size(GLaplacian);
b=reshape(GLaplacian,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessGLap=t(4);% t(4)= skewness of histogram
VGLap=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SGLap=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KGLap=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageGLap= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageGLap= mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageGLap = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
FeaturesGLap=[SkewnessGLap,VGLap,SGLap,KGLap,min_imageGLap,mean_imageGLap,max_imageGLap];
FeaturesGGra=[SkewnessGGra,VGGra,SGGra,KGGra,min_imageGGra,mean_imageGGra,max_imageGGra];
FeaturesG=[SkewnessG,VG,SG,KG,min_imageG,mean_imageG,max_imageG];
AllFeaturesG=[FeaturesGGra,FeaturesG,FeaturesGLap];
LBPGLap = extractLBPFeatures(GLaplacian,'Upright',false);
LBPGGra = extractLBPFeatures(Gmag,'Upright',false);
% Statistical Features from chanel B
[r,c]=size(B);
b=reshape(B,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessB=t(4);% t(4)= skewness of histogram
VB=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SB=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KB=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageB = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageB = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageB = max(reshape(BlockedImg,[r*c,1]));% max of the block
sigma = 0.4;
alpha = 0.5;
BLaplacian = locallapfilt(B, sigma, alpha);
% imshow(BLaplacian);
[r,c]=size(BLaplacian);
b=reshape(BLaplacian,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessBLap=t(4);% t(4)= skewness of histogram
VBLap=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SBLap=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KBLap=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageBLap= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageBLap= mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageBLap = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
FeaturesBLap=[SkewnessBLap,VBLap,SBLap,KBLap,min_imageBLap,mean_imageBLap,max_imageBLap];
FeaturesB=[SkewnessB,VB,SB,KB,min_imageB,mean_imageB,max_imageB];
AllFeaturesB=[FeaturesBLap,FeaturesB];
% Statistical Features from chanel H
[r,c]=size(h);
b=reshape(h,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessH=t(4);% t(4)= skewness of histogram
VH=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SH=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KH=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageH = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageH = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageH = max(reshape(BlockedImg,[r*c,1]));% max of the block
FeaturesH=[SkewnessH,VH,SH,KH,min_imageH,mean_imageH,max_imageH];
% Statistical Features from chanel S
[r,c]=size(s);
b=reshape(s,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessS=t(4);% t(4)= skewness of histogram
VS=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SS=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KS=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imagesS = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imagesS = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imagesS = max(reshape(BlockedImg,[r*c,1]));% max of the block
[Gmag, Gdir] = imgradient(s,'prewitt');
[r,c]=size(Gmag);
b=reshape(Gmag,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessSGra=t(4);% t(4)= skewness of histogram
VSGra=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SSGra=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KSGra=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageSGra= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageSGra = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageSGra = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
FeaturesSGra=[SkewnessSGra,VSGra,SSGra,KSGra,min_imageSGra,mean_imageSGra,max_imageSGra];
FeaturesS=[SkewnessS,VS,SS,KS,min_imagesS,mean_imagesS,max_imagesS];
AllFeaturesS=[FeaturesSGra,FeaturesS];
% Statistical Features from chanel V
[r,c]=size(v);
b=reshape(v,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessV=t(4);% t(4)= skewness of histogram
VV=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SV=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KV=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageV = min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageV = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageV = max(reshape(BlockedImg,[r*c,1]));% max of the block
[Gmag, Gdir] = imgradient(v,'prewitt');
[r,c]=size(Gmag);
b=reshape(Gmag,[r*c,1]); % change BlockedImg into a vector
indices=find(b); % find the pixles which there are plants
BlockedImgNonZero=b(indices(1:end)); % find the intensity of pixles which there are plants
NumNonzero=nnz(b); % find the number of pixles which there are plants
t = statxture (BlockedImgNonZero);
BlockedImgNonZero=im2double(BlockedImgNonZero);
SkewnessVGra=t(4);% t(4)= skewness of histogram
VVGra=var(reshape(BlockedImgNonZero,[NumNonzero,1]));
SVGra=std(reshape(BlockedImgNonZero,[NumNonzero,1]));
KVGra=kurtosis(reshape(BlockedImgNonZero,[NumNonzero,1]));
% Feature 1
min_imageVGra= min(reshape(BlockedImgNonZero,[NumNonzero,1]));% min of the block
% Feature 2
mean_imageVGra = mean(reshape(BlockedImgNonZero,[NumNonzero,1]));% mean of the block
% Feature 3
max_imageVGra = max(reshape(BlockedImgNonZero,[NumNonzero,1]));% max of the block
FeaturesVGra=[SkewnessVGra,VVGra,SVGra,KVGra,min_imageVGra,mean_imageVGra,max_imageVGra];
FeaturesV=[SkewnessV,VV,SV,KV,min_imageV,mean_imageV,max_imageV];
AllFeaturesV=[FeaturesVGra,FeaturesV];
LBPVGra = extractLBPFeatures(Gmag,'Upright',false);
% Shape features
Im_gray=BlockedImg; % copy BlockedImg
% figure();imshow(Im_gray)
Im_med=medfilt2(Im_gray); % median filtering
% figure();imshow(Im_gray)
Im_bw=im2bw(Im_med,graythresh(Im_med)); % thresholding
% if sum(sum(Im_bw))/numel(Im_bw)>0.5
% Im_bw=~Im_bw;
% end
% figure();imshow(Im_bw)
prop=regionprops(Im_bw);
ar=cat(1,prop.Area);
[Ar,l]=max(ar);
%First Property Of Regionprops
Im_bw=bwareaopen(Im_bw,abs(Ar-50)); % remove all objects in the image containing fewer than (Ar - 50) pixels
e=bwperim(Im_bw); % find perimiter of plant in the Im_bw
premiter=nnz(e); % cal perimiter
%Second
conv_hull=bwconvhull(Im_bw); % compute the covex hull of all objects in the Im_bw
convex_hull=sum(sum(conv_hull)); % cal covex hull
%Third
major=regionprops(Im_bw,'MajorAxisLength'); % cal MajorAxisLength
major=major.MajorAxisLength;
%Fourth
minor=regionprops(Im_bw,'MinorAxisLength'); % cal MinorAxisLength
minor=minor.MinorAxisLength;
%Fifth
major_minor=major/minor; % cal MajorAxisLength/MinorAxisLength
%Last
compactness=Ar/(premiter^2);% compactness (area / perimeter2)
solidity=Ar/convex_hull;% solidity (area / area of convex hull)
convexity=premiter/nnz(bwperim(conv_hull));% convexity (perimeter / perimeter of convex hull)
FeaturesShapes=[Ar,premiter,convex_hull,major,minor,major_minor,compactness,solidity,convexity]; % ghathering Regionprops features together
LBPGray = extractLBPFeatures(BlockedImg,'Upright',false);
AllLBPFeatures=[LBPGray,LBPVGra,LBPGGra,LBPGLap];
AllFeatures=[AllLBPFeatures,FeatuesGray,AllFeaturesR,AllFeaturesG,AllFeaturesB,FeaturesH,AllFeaturesS,AllFeaturesV,FeaturesShapes]'; % ghathering all features together
%% Detecting The Class Of Block
Detect=sim(net,AllFeatures);
a=zeros(80,80,3);% initialization
if (max(Detect) == Detect(1)) % If the block belongs to class 1 ?
for i=1:80
for j=1:80
if BlockedImg(i,j)~=0
a(i,j,1)=255;
a(i,j,2)=0;
a(i,j,3)=0;
end
end
end
elseif (max(Detect) == Detect(2)) % If the block belongs to class 2 ?
for i22=1:80
for j22=1:80
if BlockedImg(i22,j22)~=0
a(i22,j22,1)=0;
a(i22,j22,2)=255;
a(i22,j22,3)=0;
end
end
end
end
%% Construct The Output image
FinalImg(i5:i5+(80-1),j5:j5+(80-1),:)=a;
counter=counter+1;
end
end
end
end
%% Assessment The Output Image
[y1 ,y2 ,y3 ,y4]=ComparingResults(LabeledImg2,FinalImg); % calculate Avrage Acuuracy,Percision,Recall,F1score of each output images respectively by calling ComparingResults
ComparedResults(:,i4-20)=[y1 ,y2 ,y3 ,y4]';
%% Writing The Output Images
% cd 'C:\Users\mohammad\Desktop\project\Output images6' % go to blocked image folder
% imwrite(FinalImg,[num2str(i4),'.png']); % write the image
% cd ..
end
%% Assessment Whole Output Images
AvrageAcuuracy=mean(ComparedResults(1,:)) % cal Avrage Acuuracy of whole output images
Percision=mean(ComparedResults(2,:)) % cal Percision of whole output images
Recall=mean(ComparedResults(3,:)) % cal Recall of whole output images
F1score=mean(ComparedResults(4,:)) % cal F1score of whole output images
% pause(.5)
% figure();imshow(FinalImg)