-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
411 lines (327 loc) · 18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import json
import torch
import random
import argparse
import numpy as np
from tqdm import tqdm
from datetime import datetime
from contrastive import contrastive
from models.resnet_imagenet import resnet18, resnet50
from models.resnet import ResNet18, ResNet34, ResNet50
from torch.utils.tensorboard import SummaryWriter
from dataset_loader import noise_loader, load_cifar10, load_svhn, load_cifar100, load_imagenet, load_mvtec_ad
def to_np(x):
return x.data.cpu().numpy()
def parsing():
parser = argparse.ArgumentParser(description='',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--epochs', '-e', type=int, default=50,
help='Number of epochs to train.')
parser.add_argument('--batch_size', '-b', type=int,
default=64, help='Batch size.')
parser.add_argument('--seed', type=int, default=1,
help='seed for np(tinyimages80M sampling); 1|2|8|100|107')
parser.add_argument('--num_workers', type=int,
default=0, help='starting epoch from.')
parser.add_argument('--save_path', type=str,
default=None, help='Path to save files.')
parser.add_argument('--model_path', type=str,
default=None, help='Path to model to resume training.')
parser.add_argument('--device', type=str,
default="cuda", help='cuda or cpu.')
# Optimizer Config
parser.add_argument('--optimizer', type=str,
default='sgd', help='The initial learning rate.')
parser.add_argument('--learning_rate', '-lr', type=float,
default=0.001, help='The initial learning rate.')
parser.add_argument('--lr_update_rate', type=float,
default=3, help='The update rate for learning rate.')
parser.add_argument('--milestones', nargs='+', type=int, default=[500, 800],
help='A list of milestones')
parser.add_argument('--lr_gamma', type=float,
default=0.1, help='The gamma param for updating learning rate.')
parser.add_argument('--last_lr', type=float,
default=0, help='The gamma param for updating learning rate.')
parser.add_argument('--lamb', type=float, default=1, help='loss scaling parameter')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float,
default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--run_index', default=0, type=int, help='run index')
parser.add_argument('--dataset', default='cifar10', type=str, help='cifar10-cifar100-svhn')
parser.add_argument('--one_class_idx', default=None, type=int, help='select one class index')
parser.add_argument('--temperature', default=0.5, type=float, help='chaning temperature of contrastive loss')
parser.add_argument('--preprocessing', default='clip', type=str, help='which preprocessing use for noise order')
parser.add_argument('--shift_normal', action="store_true", help='Using shifted normal data')
parser.add_argument('--k_pairs', default=1, type=int, help='Selecting multiple pairs for contrastive loss')
parser.add_argument('--gpu', default=0, type=int, help='Select gpu number')
parser.add_argument('--multi_gpu', action="store_true", help='Selecting multi-gpu for training')
parser.add_argument('--e_holder', default=0, type=str, help='Epoch number holder')
parser.add_argument('--linear', action="store_true", help='Initiate linear layer or not!')
parser.add_argument('--config', default=None, help='Config file for reading paths')
args = parser.parse_args()
return args
def train_one_class(train_loader, train_positives_loader, train_negetives_loader,
net, train_global_iter, optimizer, device, writer):
# Enter model into train mode
net.train()
# Tracking metrics
epoch_accuracies = {
'normal': [],
'positive': [],
'negative': []
}
epoch_loss = {
'loss': [],
'ce': [],
'contrastive': []
}
sim_ps, sim_ns = [], []
if args.k_pairs == 1:
for normal, p_data, n_data in tqdm(zip(train_loader, train_positives_loader[0], train_negetives_loader[0])):
imgs, labels = normal
p_imgs, _ = p_data
n_imgs, _ = n_data
imgs, labels = imgs.to(args.device), labels.to(args.device)
p_imgs = p_imgs.to(args.device)
n_imgs = n_imgs.to(args.device)
optimizer.zero_grad()
_, normal_features = model(imgs, True)
_, p_features = model(p_imgs, True)
_, n_features = model(n_imgs, True)
normal_features = normal_features[-1]
p_features = p_features[-1]
n_features = n_features[-1]
loss_contrastive = torch.tensor(0.0, requires_grad=True)
for norm_f, p_f, n_f in zip(normal_features, p_features, n_features):
l_c, sim_p, sim_n = contrastive(norm_f, p_f, n_f, temperature=args.temperature)
loss_contrastive = loss_contrastive + l_c
sim_ps.append(sim_p.detach().cpu())
sim_ns.append(sim_n.detach().cpu())
loss = loss_contrastive / len(normal_features)
epoch_loss['loss'].append(loss.item())
epoch_loss['contrastive'].append(loss_contrastive.item())
train_global_iter += 1
writer.add_scalar("Train/loss", loss.item(), train_global_iter)
writer.add_scalar("Train/sim_p", torch.mean(sim_p).detach().cpu().numpy(), train_global_iter)
writer.add_scalar("Train/sim_n", torch.mean(sim_n).detach().cpu().numpy(), train_global_iter)
loss.backward()
optimizer.step()
elif args.k_pairs == 2:
for normal, p_data, n_data, p_data1, n_data1 in zip(train_loader, train_positives_loader[0], train_negetives_loader[0], train_positives_loader[1], train_negetives_loader[1]):
imgs, labels = normal
p_imgs, _ = p_data
n_imgs, _ = n_data
p_imgs1, _ = p_data1
n_imgs1, _ = n_data1
imgs, labels = imgs.to(args.device), labels.to(args.device)
p_imgs = p_imgs.to(args.device)
n_imgs = n_imgs.to(args.device)
p_imgs1 = p_imgs1.to(args.device)
n_imgs1 = n_imgs1.to(args.device)
optimizer.zero_grad()
_, normal_features = model(imgs, True)
_, p_features = model(p_imgs, True)
_, n_features = model(n_imgs, True)
_, p_features1 = model(p_imgs1, True)
_, n_features1 = model(n_imgs1, True)
normal_features = normal_features[-1]
p_features = p_features[-1]
n_features = n_features[-1]
p_features1 = p_features1[-1]
n_features1 = n_features1[-1]
loss_contrastive = torch.tensor(0.0, requires_grad=True)
for norm_f, p_f, n_f, p_f1, n_f1 in zip(normal_features, p_features, n_features, p_features1, n_features1):
p_fs = torch.stack([p_f, p_f1], dim=0)
n_fs = torch.stack([n_f, n_f1], dim=0)
l_c, sim_p, sim_n = contrastive(norm_f, p_fs, n_fs, temperature=args.temperature)
loss_contrastive = loss_contrastive + l_c
sim_ps.append(sim_p.detach().cpu())
sim_ns.append(sim_n.detach().cpu())
loss = loss_contrastive / len(normal_features)
epoch_loss['loss'].append(loss.item())
epoch_loss['contrastive'].append(loss_contrastive.item())
train_global_iter += 1
writer.add_scalar("Train/loss", loss.item(), train_global_iter)
writer.add_scalar("Train/sim_p", torch.mean(sim_p).detach().cpu().numpy(), train_global_iter)
writer.add_scalar("Train/sim_n", torch.mean(sim_n).detach().cpu().numpy(), train_global_iter)
loss.backward()
optimizer.step()
elif args.k_pairs == 3:
for normal, p_data, n_data, p_data1, n_data1, p_data2, n_data2 in zip(train_loader, train_positives_loader[0], train_negetives_loader[0], train_positives_loader[1], train_negetives_loader[1], train_positives_loader[2], train_negetives_loader[2]):
imgs, labels = normal
p_imgs, _ = p_data
n_imgs, _ = n_data
p_imgs1, _ = p_data1
n_imgs1, _ = n_data1
p_imgs2, _ = p_data2
n_imgs2, _ = n_data2
imgs, labels = imgs.to(args.device), labels.to(args.device)
p_imgs = p_imgs.to(args.device)
n_imgs = n_imgs.to(args.device)
p_imgs1 = p_imgs1.to(args.device)
n_imgs1 = n_imgs1.to(args.device)
p_imgs2 = p_imgs2.to(args.device)
n_imgs2 = n_imgs2.to(args.device)
optimizer.zero_grad()
_, normal_features = model(imgs, True)
_, p_features = model(p_imgs, True)
_, n_features = model(n_imgs, True)
_, p_features1 = model(p_imgs1, True)
_, n_features1 = model(n_imgs1, True)
_, p_features2 = model(p_imgs2, True)
_, n_features2 = model(n_imgs2, True)
normal_features = normal_features[-1]
p_features = p_features[-1]
n_features = n_features[-1]
p_features1 = p_features1[-1]
n_features1 = n_features1[-1]
p_features2 = p_features2[-1]
n_features2 = n_features2[-1]
loss_contrastive = torch.tensor(0.0, requires_grad=True)
for norm_f, p_f, n_f, p_f1, n_f1, p_f2, n_f2 in zip(normal_features, p_features, n_features, p_features1, n_features1, p_features2, n_features2):
p_fs = torch.stack([p_f, p_f1, p_f2], dim=0)
n_fs = torch.stack([n_f, n_f1, n_f2], dim=0)
l_c, sim_p, sim_n = contrastive(norm_f, p_fs, n_fs, temperature=args.temperature)
loss_contrastive = loss_contrastive + l_c
sim_ps.append(sim_p.detach().cpu())
sim_ns.append(sim_n.detach().cpu())
loss = loss_contrastive / len(normal_features)
epoch_loss['loss'].append(loss.item())
epoch_loss['contrastive'].append(loss_contrastive.item())
train_global_iter += 1
writer.add_scalar("Train/loss", loss.item(), train_global_iter)
writer.add_scalar("Train/sim_p", torch.mean(sim_p).detach().cpu().numpy(), train_global_iter)
writer.add_scalar("Train/sim_n", torch.mean(sim_n).detach().cpu().numpy(), train_global_iter)
loss.backward()
optimizer.step()
if args.k_pairs == 1:
avg_sim_ps = torch.mean(torch.tensor(sim_ps), dim=0).detach().cpu().numpy()
avg_sim_ns = torch.mean(torch.tensor(sim_ns), dim=0).detach().cpu().numpy()
writer.add_scalar("AVG_Train/sim_p", avg_sim_ps, train_global_iter)
writer.add_scalar("AVG_Train/sim_n", avg_sim_ns, train_global_iter)
else:
avg_sim_ps = torch.mean(torch.cat(sim_ps, dim=0), dim=0).detach().cpu().numpy()
avg_sim_ns = torch.mean(torch.cat(sim_ns, dim=0), dim=0).detach().cpu().numpy()
writer.add_scalar("AVG_Train/sim_p", avg_sim_ps, train_global_iter)
writer.add_scalar("AVG_Train/sim_n", avg_sim_ns, train_global_iter)
return train_global_iter, epoch_loss, epoch_accuracies, avg_sim_ps, avg_sim_ns
def load_model(args):
if args.linear:
model = ResNet18(args.num_classes, args.linear)
else:
model = ResNet18(args.num_classes)
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), args.learning_rate,
momentum=args.momentum,weight_decay=args.decay)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), args.learning_rate,
weight_decay=args.decay)
else:
raise NotImplemented("Not implemented optimizer!")
if args.model_path:
model.load_state_dict(torch.load(args.model_path))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_update_rate, gamma=args.lr_gamma)
criterion = torch.nn.CrossEntropyLoss().to(args.device)
return model, criterion, optimizer, scheduler
def create_path(args):
if args.model_path is not None:
save_path = args.save_path
model_save_path = save_path + 'models/'
else:
addr = datetime.today().strftime('%Y-%m-%d-%H-%M-%S-%f')
save_path = f'./run/exp' + f'_{args.dataset}' + f'_{args.learning_rate}' + f'_{args.lr_update_rate}' + f'_{args.lr_gamma}' + \
f'_{args.optimizer}' + f'_epochs_{args.epochs}' + f'_one_class_idx_{args.one_class_idx}' + \
f'_temprature_{args.temperature}' + f'_shift_normal_{str(args.shift_normal)}' + \
f'_preprocessing_{args.preprocessing}' + f'_seed_{args.seed}' + f'_linear_layer_{args.linear}' + f'_k_pairs_{args.k_pairs}' + '/'
model_save_path = save_path + 'models/'
if not os.path.exists(model_save_path):
os.makedirs(model_save_path, exist_ok=True)
else:
save_path = f'./run/exp-' + addr + f'_{args.dataset}' + f'_{args.learning_rate}' + f'_{args.lr_update_rate}' + f'_{args.lr_gamma}' + \
f'_{args.optimizer}' + f'_epochs_{args.epochs}' + f'_one_class_idx_{args.one_class_idx}' + \
f'_temprature_{args.temperature}' + f'_shift_normal_{str(args.shift_normal)}' +\
f'_preprocessing_{args.preprocessing}' + f'_seed_{args.seed}' + f'_linear_layer_{args.linear}' + f'_k_pairs_{args.k_pairs}' + '/'
model_save_path = save_path + 'models/'
os.makedirs(model_save_path, exist_ok=True)
return model_save_path, save_path
def loading_datasets(args):
if args.dataset == 'cifar10':
args.num_classes = 10
train_loader, test_loader = load_cifar10(data_path,
batch_size=args.batch_size,
one_class_idx=args.one_class_idx)
elif args.dataset == 'svhn':
args.num_classes = 10
train_loader, test_loader = load_svhn(data_path,
batch_size=args.batch_size,
one_class_idx=args.one_class_idx)
elif args.dataset == 'cifar100':
args.num_classes = 20
train_loader, test_loader = load_cifar100(data_path,
batch_size=args.batch_size,
one_class_idx=args.one_class_idx)
elif args.dataset == 'imagenet30':
args.num_classes = 30
train_loader, test_loader = load_imagenet(imagenet_path,
batch_size=args.batch_size,
one_class_idx=args.one_class_idx)
elif args.dataset == 'mvtec_ad':
args.num_classes = 15
train_loader, test_loader = load_mvtec_ad(data_path,
batch_size=args.batch_size,
one_class_idx=args.one_class_idx)
print("Start Loading noises")
train_positives_loader, train_negetives_loader, test_positives_loader, test_negetives_loader = \
noise_loader(args, batch_size=args.batch_size, one_class_idx=args.one_class_idx,
dataset=args.dataset, preprocessing=args.preprocessing, k_pairs=args.k_pairs)
print("Loading noises finished!")
return train_loader, test_loader, train_positives_loader, train_negetives_loader, test_positives_loader, test_negetives_loader
def set_seed(seed_nu):
torch.manual_seed(seed_nu)
random.seed(seed_nu)
np.random.seed(seed_nu)
with open('config.json', 'r') as config_file:
config = json.load(config_file)
root_path = config['root_path']
data_path = config['data_path']
imagenet_path = config['imagenet_path']
args = parsing()
args.config = config
# Setting seeds for reproducibility
set_seed(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
train_loader, test_loader, train_positives_loader, train_negetives_loader,\
test_positives_loader, test_negetives_loader = loading_datasets(args)
model, criterion, optimizer, scheduler = load_model(args)
if torch.cuda.device_count() > 1 and args.device == 'cuda' and args.multi_gpu:
print("Using", torch.cuda.device_count(), "GPUs")
model = torch.nn.DataParallel(model)
elif args.device == 'cuda':
os.environ['CUDA_VISIBLE_DEVICES']='0,1'
args.device=f'cuda:{args.gpu}'
model = model.to(args.device)
model_save_path, save_path = create_path(args)
writer = SummaryWriter(save_path)
args.save_path = save_path
train_global_iter = 0
args.last_lr = args.learning_rate
for epoch in range(1, args.epochs):
print('epoch', epoch, '/', args.epochs)
args.e_holder = str(epoch)
train_global_iter, epoch_loss, epoch_accuracies, avg_sim_ps, avg_sim_ns =\
train_one_class(train_loader, train_positives_loader, train_negetives_loader, \
model, train_global_iter, optimizer, args.device, writer)
writer.add_scalar("AVG_Train/avg_loss", np.mean(epoch_loss['loss']), epoch)
writer.add_scalar("AVG_Train/avg_loss_contrastive", np.mean(epoch_loss['contrastive']), epoch)
writer.add_scalar("Train/lr", args.last_lr, epoch)
print(f"Train/avg_loss: {np.mean(epoch_loss['loss'])}")
if (epoch) % 5 == 0:
torch.save(model.state_dict(), os.path.join(model_save_path,f'model_params_epoch_{epoch}.pt'))
args.last_lr = scheduler.get_last_lr()[0]
last_sim_ps = avg_sim_ps
last_sim_ns = avg_sim_ns
args.seed += epoch
set_seed(args.seed)
torch.save(model.state_dict(), os.path.join(save_path,'last_params.pt'))