-
Notifications
You must be signed in to change notification settings - Fork 0
/
Gauss_Seidal_Method.m
142 lines (126 loc) · 5.62 KB
/
Gauss_Seidal_Method.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
clc;clear
a=input('Input the cofficients in the form of a matrix a=')
[r,c]=size(a);
while r~=c %% As 'a' must be a square matrix
disp('a is not a square matrix.Please enter a square matrix')
a=input('Input the cofficients in the form of a matrix a=')
[r,c]=size(a);
end
%Checking if the matrix is diagonally dominant or not
i=1;
while i<=r
if abs(a(i,i))<max(abs(a(i,:)))
disp('''a'' is not a diagonally dominant matrix.')
disp('Make it diagonally dominant and enter again....')
a=input('Input the cofficients in the form of a matrix a=')
else
i=i+1;
end
end
b=input('Input constants in the form of a column matrix b=')
[row,col]=size(b);
while col~=1 %'b' must be a column vector
disp('b is not a column matrix.Please enter a column matrix')
b=input('Input constants in the form of a column matrix b=')
[row,col]=size(b);
end
while r~=row %%avoiding the error of unequal no of rows of 'a' and 'b'
disp('No. of Rows of ''a'' are not equal to No of Rows of ''b''')
a=input('Input the cofficients in the form of a matrix a=')
[r,c]=size(a);
while r~=c %% As 'a' must be a square matrix
disp('a is not a square matrix.Please enter a square matrix')
a=input('Input the cofficients in the form of a matrix a=')
[r,c]=size(a);
end
%Checking if the matrix is diagonally dominant or not
i=1;
while i<=r
if abs(a(i,i))<max(abs(a(i,:)))
disp('''a'' is not a diagonally dominant matrix.')
disp('Make it diagonally dominant and enter again...')
a=input('Input the cofficients in the form of a matrix a=')
else
i=i+1;
end
end
b=input('Input constants in the form of a column matrix b=')
[row,col]=size(b);
while col~=1 %'b' must be a column vector
disp('b is not a column matrix.Please enter a column matrix')
b=input('Input constants in the form of a column matrix b=')
[row,col]=size(b);
end
end
n=length(b);
x=[87.891,87.695,62.695,62.598];
xnew=[87.891,87.695,62.695,62.598];
iterlimit=100;
tol=input('Input tolerence=');
for iteration=1:iterlimit
convergence=true;
for i=1:n %loop of equations
sum=0;
for j=1:n %loop of summation
if j~=i
sum=sum+a(i,j)*x(j);
end
end
xnew(i)=-1/a(i,i)*(sum-b(i));
% For storing Relative Error in a matrix
Error(iteration,i)=(abs((xnew(i))'-(x(i))'));
if abs(xnew(i)-x(i))>tol
convergence=false;
end
x=xnew;
H(iteration,:)=xnew';
col1(iteration,1)=iteration;
end
if convergence
break
end
end
iteration
xnew
Table=[0,zeros(1,n);col1 H];
fprintf('Table of Iterations \n')
if n==2
fprintf(' No. of x1 x2 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \n',[(Table(:,1))';(Table(:,2))';(Table(:,3))'])
elseif n==3
fprintf(' No. of x1 x2 x3 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f\n',[(Table(:,1))';(Table(:,2))';(Table(:,3))';(Table(:,4))'])
elseif n==4
fprintf(' No. of x1 x2 x3 x4 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[(Table(:,1))';(Table(:,2))';(Table(:,3))';(Table(:,4))';(Table(:,5))'])
elseif n==5
fprintf(' No. of x1 x2 x3 x4 x5 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[(Table(:,1))';(Table(:,2))';(Table(:,3))';(Table(:,4))';(Table(:,5))';(Table(:,6))'])
elseif n==6
fprintf(' No. of x1 x2 x3 x4 x5 x6 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[(Table(:,1))';(Table(:,2))';(Table(:,3))';(Table(:,4))';(Table(:,5))';(Table(:,6))';(Table(:,7))'])
else
disp('Please change script to get the Table of Iterations')
end
fprintf('\nTable of Relative Error \n')
if n==2
fprintf(' No. of x1 x2 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \n',[col1';(Error(:,1))';(Error(:,2))'])
elseif n==3
fprintf(' No. of x1 x2 x3 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f\n',[col1';(Error(:,1))';(Error(:,2))';(Error(:,3))'])
elseif n==4
fprintf(' No. of x1 x2 x3 x4 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[col1';(Error(:,1))';(Error(:,2))';(Error(:,3))';(Error(:,4))'])
elseif n==5
fprintf(' No. of x1 x2 x3 x4 x5 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[col1';(Error(:,1))';(Error(:,2))';(Error(:,3))';(Error(:,4))';(Error(:,5))'])
elseif n==6
fprintf(' No. of x1 x2 x3 x4 x5 x6 \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \t %2.8f \n',[col1';(Error(:,1))';(Error(:,2))';(Error(:,3))';(Error(:,4))';(Error(:,5))';(Error(:,6))'])
else
disp('Please change script to get the Table of Iterations')
end
fprintf('\nTable of Maximum Error \n')
fprintf(' No. of Max_Error \niterations \n')
fprintf('\t%2.0f \t\t %2.8f \n',[col1';(max(Error,[],2))'])