-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
36 lines (29 loc) · 1.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pickle
from flask import Flask, request, app, jsonify, url_for, render_template
import numpy as np
import pandas as pd
app = Flask(__name__)
## loading the model
regmodel = pickle.load(open('Model/regressionmodel.pkl', 'rb'))
scalar = pickle.load(open('Model/scaling.pkl', 'rb'))
@app.route('/')
def home():
return render_template('home.html')
# @app.route('/predict_api', methods=['POST'])
# def predict_api():
# data = request.json['data']
# print(data)
# print(np.array(list(data.values())[0])).reshape(1, -1)
# new_data = scalar.transform(np.array(list(data.values())).reshape(1, -1))
# output = regmodel.predict(new_data)
# print(output[0])
# return jsonify(output[0])
@app.route('/predict', methods=['POST'])
def predict():
data = [ float(x) for x in request.form.values()]
final_input = scalar.transform(np.array(data).reshape(1, -1))
print(final_input)
output = regmodel.predict(final_input)[0]
return render_template("home.html", prediction_text = "The house price prediction is {}".format(output))
if __name__ == "__main__":
app.run(debug=True)