-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
59 lines (43 loc) · 1.71 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
import pickle
import requests
movies_df = pickle.load(open('movie.pkl', 'rb'))
movie_list = movies_df['title'].values
similarity = pickle.load(open('similarity.pkl', 'rb'))
st.set_page_config(page_title="Movies Recommendation", page_icon="🍿", layout="wide")
def fetch_poster(id):
response = requests.get("https://api.themoviedb.org/3/movie/{}?api_key=b25587cadc014bbcf38f0b9c3d577fb0".format(id))
data = response.json()
poster = "https://image.tmdb.org/t/p/w500/" + data['poster_path']
return poster
# creating the function to recommend movie
def recommend(selected_movie, movies_df):
index = movies_df[movies_df['title'] == selected_movie].index[0]
distances = similarity[index]
movies = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_poster = []
for movi in movies:
recommended_movies.append(movies_df.iloc[movi[0]].title)
recommended_movies_poster.append(fetch_poster(movies_df.iloc[movi[0]].id))
return recommended_movies , recommended_movies_poster
st.title('Movie Recommender System 🍿👀🎞')
selected_movie = st.selectbox('Select your movie', movie_list)
if st.button('Recommend'):
names, posters = recommend(selected_movie, movies_df)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.subheader(names[0])
st.image(posters[0])
with col2:
st.subheader(names[1])
st.image(posters[1])
with col3:
st.subheader(names[2])
st.image(posters[2])
with col4:
st.subheader(names[3])
st.image(posters[3])
with col5:
st.subheader(names[4])
st.image(posters[4])