forked from microsoft/promptbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataload.py
251 lines (191 loc) · 9.48 KB
/
dataload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from config import *
import json
from datasets import load_dataset
"""
====================================================================================================
3 functions need to be implemented.
__init__(): load data from file or other sources.
get_content_by_idx(): return a dict with relevant informations.
get_few_shot_examples(): return a string with few-shot examples.
====================================================================================================
"""
class Dataset(object):
def __init__(self):
self.data = None
def __len__(self):
assert self.data is not None, "self.data is None. Please load data first."
return len(self.data)
def get_content_by_idx(self, idx, *args):
raise NotImplementedError("get_content_by_idx() must be implemented in the subclass.")
def get_few_shot_examples(self, task):
raise NotImplementedError("get_few_shot_examples() must be implemented in the subclass.")
class Math(Dataset):
def __init__(self) -> None:
from data.math import math_dataset
self.data = []
for task in math_dataset.keys():
for d in math_dataset[task]:
d["task"] = task
self.data.append(d)
def get_content_by_idx(self, idx, *args):
return self.data[idx]
def get_few_shot_examples(self, task):
from prompts.three_shot.few_shot_examples import examples
few_shot_data = examples["math"][task]
few_shot_examples = "Here are three examples. \n"
for d in few_shot_data:
few_shot_examples += "Question: " + d["question"] + "\n"
few_shot_examples += "Answer: " + str(d["answer"]) + "\n"
return few_shot_examples
class UnMulti(object):
def __init__(self, data_path, supported_languages):
import json
with open(data_path, 'r') as f:
data = json.load(f)
self.data = dict()
idx = 0
supported_tasks = []
for task_i in data.keys():
source, target = task_i.split('-')
if source in supported_languages and target in supported_languages:
supported_tasks.append(task_i)
num_tasks = len(supported_tasks)
num_samples = 100
for task_i in supported_tasks:
source, target = task_i.split('-')
for d in data[task_i][:int(num_samples//num_tasks)]:
self.data[idx] = {
'source': d[source],
'target': d[target],
'task': task_i
}
idx += 1
def get_content_by_idx(self, idx, task=None):
return self.data[idx]
def get_few_shot_examples(self, task):
from prompts.three_shot.few_shot_examples import examples
few_shot_examples = examples["un_multi"][task]
return few_shot_examples
class IWSLT(UnMulti):
def get_few_shot_examples(self, task):
from prompts.three_shot.few_shot_examples import examples
few_shot_examples = examples["iwslt"][task]
return few_shot_examples
class SQUAD_V2(Dataset):
def __init__(self, dataset_type="validation"):
# self.data = []
# data = load_dataset("squad_v2")[dataset_type]
# random.seed(42)
# random_indices = random.sample(range(len(data)), 1000)
# self.data = data.select(random_indices)
with open("data/SQUAD_V2.json", "r") as file:
self.data = json.load(file)
import random
random.seed(42)
random.shuffle(self.data)
self.data = self.data[:200]
def get_content_by_idx(self, idx, *args):
content = "Context: " + self.data[idx]["context"] + "\n" \
"Question: " + self.data[idx]["question"] + "\n"
return {"id": self.data[idx]["id"], "content": content}
def get_reference(self):
references = []
# for i in range(1):
# data = self.data[i]
for data in self.data:
references.append({"answers": data["answers"], "id": data["id"]})
return references
def get_few_shot_examples(self, task):
from prompts.three_shot.few_shot_examples import examples
few_shot_examples = examples[task]
return few_shot_examples
class MMLU(Dataset):
def __init__(self, dataset_type="validation"):
self.tasks = ['high_school_european_history', 'business_ethics', 'clinical_knowledge', 'medical_genetics',
'high_school_us_history', 'high_school_physics', 'high_school_world_history', 'virology',
'high_school_microeconomics', 'econometrics', 'college_computer_science', 'high_school_biology',
'abstract_algebra', 'professional_accounting', 'philosophy', 'professional_medicine', 'nutrition',
'global_facts', 'machine_learning', 'security_studies', 'public_relations', 'professional_psychology',
'prehistory', 'anatomy', 'human_sexuality', 'college_medicine', 'high_school_government_and_politics',
'college_chemistry', 'logical_fallacies', 'high_school_geography', 'elementary_mathematics', 'human_aging',
'college_mathematics', 'high_school_psychology', 'formal_logic', 'high_school_statistics', 'international_law',
'high_school_mathematics', 'high_school_computer_science', 'conceptual_physics', 'miscellaneous', 'high_school_chemistry',
'marketing', 'professional_law', 'management', 'college_physics', 'jurisprudence', 'world_religions', 'sociology',
'us_foreign_policy', 'high_school_macroeconomics', 'computer_security', 'moral_scenarios', 'moral_disputes',
'electrical_engineering', 'astronomy', 'college_biology']
with open("data/MMLU.json", "r") as file:
self.raw_data = json.load(file)
cnt = {}
self.data = []
for task in self.tasks:
cnt[task] = 0
for d in self.raw_data:
task = d["task"].replace(" ", "_")
if cnt[task] < 10:
self.data.append(d)
cnt[task] += 1
with open("data/MMLU_few_shot.json", "r") as file:
self.few_shot_data = json.load(file)
def get_content_by_idx(self, idx, *args):
return self.data[idx]
def get_few_shot_examples(self, task):
content = "Here are three examples.\n"
data = self.few_shot_data[task]
for idx in range(min(len(data), 3)):
content += ("Input: " + data[idx]["input"] + "\n" \
+ "A : " + data[idx]["A"] + "\n" \
+ "B : " + data[idx]["B"] + "\n" \
+ "C : " + data[idx]["C"] + "\n" \
+ "D : " + data[idx]["D"] + "\n\n" \
+ "Answer : " + data[idx]["target"] + "\n" \
)
return content
class GLUE(Dataset):
def __init__(self, task, dataset_type="validation"):
self.supported_tasks = ["sst2", "cola", "qqp", "mnli", "mnli_matched", "mnli_mismatched", "qnli", "wnli", "rte", "mrpc"]
assert task in self.supported_tasks
self.task = task
self.dataset_type = dataset_type
if self.task == "mnli":
from datasets import concatenate_datasets
matched = load_dataset('glue', 'mnli')["validation_matched"]
mismatched = load_dataset("glue", "mnli")["validation_mismatched"]
self.data = concatenate_datasets([matched, mismatched])
else:
self.data = load_dataset("glue", task)[dataset_type]
def get_few_shot_examples(self, task):
from prompts.three_shot.few_shot_examples import examples
few_shot_examples = examples[task]
return few_shot_examples
def get_content_by_idx(self, idx, task, *args):
if task == "sst2" or task == "cola":
content = self.data[idx]['sentence']
elif task == 'qqp':
content = 'Question 1: ' + self.data[idx]['question1'] + ' Question 2: ' + self.data[idx]['question2']
elif task == 'mnli' or task == 'mnli_matched' or task == 'mnli_mismatched':
content = 'Premise: ' + self.data[idx]['premise'] + ' Hypothesis: ' + self.data[idx]['hypothesis']
elif task == 'qnli':
content = 'Question: ' + self.data[idx]['question'] + ' Context: ' + self.data[idx]['sentence']
elif task == 'rte' or task == 'mrpc' or task == "wnli":
content = 'Sentence 1: ' + self.data[idx]['sentence1'] + ' Sentence 2: ' + self.data[idx]['sentence2']
else:
raise NotImplementedError
label = self.data[idx]['label']
return {"content": content, "label": label}
def create_dataset(dataset_name, *args):
if dataset_name in ["cola", "sst2", "qqp", "mnli", "mnli_matched", "mnli_mismatched", "qnli", "wnli", "rte", "mrpc"]:
return GLUE(dataset_name)
elif dataset_name == 'mmlu':
return MMLU()
elif dataset_name == "squad_v2":
return SQUAD_V2()
elif dataset_name == 'un_multi':
return UnMulti("data/un_multi.json", args[0])
elif dataset_name == 'iwslt':
return IWSLT("data/iwslt.json", args[0])
elif dataset_name == 'math':
return Math()
else:
raise NotImplementedError