-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathApproximate Integration
94 lines (59 loc) · 1.76 KB
/
Approximate Integration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import math
from sympy.parsing.sympy_parser import (parse_expr)
def is_even(x):
return x % 2 == 0
def left_riemann_sum(a, b, f, n):
delta_x = (b - a) / n
sum = 0
for i in range(n):
x_i = a + i * delta_x
sum += delta_x * f(x_i)
return sum
def right_riemann_sum(a, b, f, n):
delta_x = (b - a) / n
sum = 0
for i in range(1, n + 1):
x_i = a + i * delta_x
sum += delta_x * f(x_i)
return sum
def midpoint_rule(a, b, f, n):
delta_x = (b - a) / n
sum = 0
for i in range(0, n):
x_i = a + i * delta_x + delta_x / 2
sum += delta_x * f(x_i)
return sum
def trapezoidal_approximate_integral(a, b, f, n):
delta_x = (b - a) / n
sum = f(a)
for i in range(1, n):
x_i = a + i * delta_x
sum += 2 * f(x_i)
sum += f(b)
approx_area = sum * (delta_x / 2)
return approx_area
def simpsons_rule_approximate_integral(a, b, f, n):
delta_x = (b - a) / n
sum = f(a)
for i in range(1, n):
x_i = a + i * delta_x
coefficient = 2 if is_even(i) else 4
sum += coefficient * f(x_i)
sum += f(b)
approx_area = sum * (delta_x / 3)
return approx_area
def string_to_function(expression):
def function(x):
return eval(expression)
return function
while True:
print("\nCompute Approximate integral:")
a = float(eval(input("Area from (a): ")))
b = float(eval(input("To (b): ")))
f = string_to_function(input("Of Function: "))
n = int(input("# of Subintervals (n): "))
print(f"\nLeft Riemann Sum: {left_riemann_sum(a, b, f, n)}")
print(f"Right Riemann Sum: {right_riemann_sum(a, b, f, n)}")
print(f"Midpoint Rule: {midpoint_rule(a, b, f, n)}")
print(f"\nTrapezoidal: {trapezoidal_approximate_integral(a, b, f, n)}")
print(f"Simpson's Rule: {simpsons_rule_approximate_integral(a, b, f, n)}")