-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfaceTrack.py
337 lines (244 loc) · 12 KB
/
faceTrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/python
'''
Author: Guido Diepen <[email protected]>
'''
#Import the OpenCV and dlib libraries
import cv2
import dlib
from FE_branch import *
from cv2 import data
import threading
import time
fe = FeatureExtraction()
#Initialize a face cascade using the frontal face haar cascade provided with
#the OpenCV library
#Make sure that you copy this file from the opencv project to the root of this
#project folder
faceCascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
#The deisred output width and height
OUTPUT_SIZE_WIDTH = 775
OUTPUT_SIZE_HEIGHT = 400
#We are not doing really face recognition
def doRecognizePerson(faceNames, fid):
time.sleep(2)
faceNames[ fid ] = "Person " + str(fid)
block = False
def detectAndTrackMultipleFaces():
global block
#Open the first webcame device
capture = cv2.VideoCapture(0)
capture.set(cv2.CAP_PROP_AUTO_EXPOSURE, 0)
capture.set(cv2.CAP_PROP_EXPOSURE, 0.15)
#Create two opencv named windows
cv2.namedWindow("base-image", cv2.WINDOW_AUTOSIZE)
cv2.namedWindow("result-image", cv2.WINDOW_AUTOSIZE)
#Position the windows next to eachother
cv2.moveWindow("base-image",0,100)
cv2.moveWindow("result-image",400,100)
#Start the window thread for the two windows we are using
cv2.startWindowThread()
#The color of the rectangle we draw around the face
rectangleColor = (0,165,255)
#variables holding the current frame number and the current faceid
frameCounter = 0
currentFaceID = 0
#Variables holding the correlation trackers and the name per faceid
faceTrackers = {}
faceNames = {}
faceFeatures = {}
cur_photo = None
try:
while True:
#Retrieve the latest image from the webcam
rc,fullSizeBaseImage = capture.read()
cur_photo = fullSizeBaseImage.copy()
#Resize the image to 320x240
baseImage = cv2.resize( fullSizeBaseImage, ( 320, 240))
#Check if a key was pressed and if it was Q, then break
#from the infinite loop
pressedKey = cv2.waitKey(2)
if pressedKey == ord('Q'):
break
#Result image is the image we will show the user, which is a
#combination of the original image from the webcam and the
#overlayed rectangle for the largest face
resultImage = baseImage.copy()
#STEPS:
# * Update all trackers and remove the ones that are not
# relevant anymore
# * Every 10 frames:
# + Use face detection on the current frame and look
# for faces.
# + For each found face, check if centerpoint is within
# existing tracked box. If so, nothing to do
# + If centerpoint is NOT in existing tracked box, then
# we add a new tracker with a new face-id
#Increase the framecounter
frameCounter += 1
#Update all the trackers and remove the ones for which the update
#indicated the quality was not good enough
fidsToDelete = []
for fid in faceTrackers.keys():
trackingQuality = faceTrackers[ fid ].update( baseImage )
#If the tracking quality is good enough, we must delete
#this tracker
if trackingQuality < 7:
fidsToDelete.append( fid )
for fid in fidsToDelete:
print("Removing fid " + str(fid) + " from list of trackers")
faceTrackers.pop( fid , None )
#Every 10 frames, we will have to determine which faces
#are present in the frame
if (frameCounter % 10) == 0:
#For the face detection, we need to make use of a gray
#colored image so we will convert the baseImage to a
#gray-based image
gray = cv2.cvtColor(baseImage, cv2.COLOR_BGR2GRAY)
#Now use the haar cascade detector to find all faces
#in the image
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
#Loop over all faces and check if the area for this
#face is the largest so far
#We need to convert it to int here because of the
#requirement of the dlib tracker. If we omit the cast to
#int here, you will get cast errors since the detector
#returns numpy.int32 and the tracker requires an int
for (_x,_y,_w,_h) in faces:
x = int(_x)
y = int(_y)
w = int(_w)
h = int(_h)
#calculate the centerpoint
x_bar = x + 0.5 * w
y_bar = y + 0.5 * h
#Variable holding information which faceid we
#matched with
matchedFid = None
#Now loop over all the trackers and check if the
#centerpoint of the face is within the box of a
#tracker
for fid in faceTrackers.keys():
tracked_position = faceTrackers[fid].get_position()
t_x = int(tracked_position.left())
t_y = int(tracked_position.top())
t_w = int(tracked_position.width())
t_h = int(tracked_position.height())
#calculate the centerpoint
t_x_bar = t_x + 0.5 * t_w
t_y_bar = t_y + 0.5 * t_h
#check if the centerpoint of the face is within the
#rectangleof a tracker region. Also, the centerpoint
#of the tracker region must be within the region
#detected as a face. If both of these conditions hold
#we have a match
if ( ( t_x <= x_bar <= (t_x + t_w)) and
( t_y <= y_bar <= (t_y + t_h)) and
( x <= t_x_bar <= (x + w )) and
( y <= t_y_bar <= (y + h ))):
matchedFid = fid
#If no matched fid, then we have to create a new tracker
if matchedFid is None:
#TODO
print("Creating new tracker " + str(currentFaceID))
print('call')
cv2.imwrite('./imgs/frame.jpg', cur_photo)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
features = fe.parse_frame(cur_photo)
print(features)
#Create and store the tracker
tracker = dlib.correlation_tracker()
tracker.start_track(baseImage,
dlib.rectangle( x-10,
y-20,
x+w+10,
y+h+20))
faceTrackers[ currentFaceID ] = tracker
faceFeatures[ currentFaceID ] = features
#Start a new thread that is used to simulate
#face recognition. This is not yet implemented in this
#version :)
t = threading.Thread( target = doRecognizePerson ,
args=(faceNames, currentFaceID))
t.start()
#Increase the currentFaceID counter
currentFaceID += 1
#Now loop over all the trackers we have and draw the rectangle
#around the detected faces. If we 'know' the name for this person
#(i.e. the recognition thread is finished), we print the name
#of the person, otherwise the message indicating we are detecting
#the name of the person
for fid in faceTrackers.keys():
tracked_position = faceTrackers[fid].get_position()
t_x = int(tracked_position.left())
t_y = int(tracked_position.top())
t_w = int(tracked_position.width())
t_h = int(tracked_position.height())
cv2.rectangle(resultImage, (t_x, t_y),
(t_x + t_w , t_y + t_h),
rectangleColor ,2)
if fid in faceNames.keys():
if faceFeatures[fid] == None and not block:
print('call')
block = True
rc,fullSizeBaseImage = capture.read()
features = FeatureExtraction().parse_frame(fullSizeBaseImage)
faceFeatures[fid] = features
if faceFeatures[fid] != None:
base = faceFeatures[fid][0]['attributes']
# print(base)
counter = 0
for key in base.keys():
string = ""
string += key + ' : '
string += str(base[key]['value'])
string += ','
cv2.putText(resultImage, string,
(int(t_x + t_w/2), int(t_y - counter * 10)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 1)
counter += 1
# cv2.putText(resultImage, faceNames[fid] ,
# (int(t_x + t_w/2), int(t_y)),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5, (255, 255, 255), 2)
else:
cv2.putText(resultImage, "Detecting..." ,
(int(t_x + t_w/2), int(t_y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 2)
#Since we want to show something larger on the screen than the
#original 320x240, we resize the image again
#
#Note that it would also be possible to keep the large version
#of the baseimage and make the result image a copy of this large
#base image and use the scaling factor to draw the rectangle
#at the right coordinates.
largeResult = cv2.resize(resultImage,
(OUTPUT_SIZE_WIDTH,OUTPUT_SIZE_HEIGHT))
#Finally, we want to show the images on the screen
# cv2.imshow("base-image", baseImage)
cv2.imshow("base-image", resultImage)
cv2.imshow("result-image", largeResult)
#To ensure we can also deal with the user pressing Ctrl-C in the console
#we have to check for the KeyboardInterrupt exception and break out of
#the main loop
except KeyboardInterrupt as e:
pass
#Destroy any OpenCV windows and exit the application
cv2.destroyAllWindows()
exit(0)
def format_face(features):
base = features[0]['attributes']
print(base['gender']['value'])
for key in base.keys():
string = ""
string += key + ' : '
string += str(base[key]['value'])
string += ','
cv2.putText(resultImage, format_face(faceFeatures[fid]),
(0, int(t_y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 1)
if __name__ == '__main__':
detectAndTrackMultipleFaces()