-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate_flip.py
236 lines (168 loc) · 6.68 KB
/
evaluate_flip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision.transforms.functional as TF
from torchvision import transforms
import time
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import argparse
import warnings
import random
from PIL import Image
from Minicity_train import MiniCity_train
from helpers.model import UNet
from helpers.minicity import MiniCity
from helpers.helpers import AverageMeter, ProgressMeter, iouCalc
from model import enc_config
from model import EfficientSeg
import torch.nn.functional as F
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from torchvision.datasets import Cityscapes
import warnings
test_size = [512,1024]
dataset_mean = [0.2870, 0.3257, 0.2854]
dataset_std = [0.1879, 0.1908, 0.1880]
from imgaug import augmenters as iaa
voidClass = 19
# Convert ids to train_ids
id2trainid = np.array([label.train_id for label in Cityscapes.classes if label.train_id >= 0], dtype='uint8')
id2trainid[np.where(id2trainid == 255)] = voidClass
criterion = nn.CrossEntropyLoss(ignore_index=MiniCity.voidClass, weight=torch.from_numpy(np.array([1.0, # road
1.0, # sidewalk
1.0, # building
2.0, # wall
2.0, # fence
2.0, # pole
1.0, # traffic light
1.0, # traffic sign
1.0, # vegetation
1.0, # terrain
1.0, # sky
1.0, # person
2.0, # rider
1.0, # car
3.0, # truck
3.0, # bus
3.0, # train
2.0, # motorcycle
2.0, # bicycle
2.0] # void
)).float().cuda())
def test_trans(image, mask=None):
# Resize, 1 for Image.LANCZOS
image = TF.resize(image, test_size, interpolation=1)
# From PIL to Tensor
image = TF.to_tensor(image)
# Normalize
image = TF.normalize(image, dataset_mean, dataset_std)
if mask:
# Resize, 0 for Image.NEAREST
mask = TF.resize(mask, test_size, interpolation=0)
mask = np.array(mask, np.uint8) # PIL Image to numpy array
mask = torch.from_numpy(mask) # Numpy array to tensor
return image, mask
else:
return image
def validate_epoch(dataloader, model, criterion, epoch, classLabels, validClasses, void=-1, maskColors=None, flip = False,deg=None):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
loss_running = AverageMeter('Loss', ':.4e')
acc_running = AverageMeter('Accuracy', ':.4e')
iou = iouCalc(classLabels, validClasses, voidClass = void)
progress = ProgressMeter(
len(dataloader),
[batch_time, data_time, loss_running, acc_running],
prefix="Test, epoch: [{}]".format(epoch))
# input resolution
res = test_size[0]*test_size[1]
all_predictions = torch.zeros((200, 20, test_size[0],test_size[1])).float().cuda()
all_labels = torch.zeros((200, test_size[0],test_size[1])).long().cuda()
# Set model in evaluation mode
model.eval() # TODO ADD PLATO SCHEDULAR INSPECT LOSSES
all_filepaths = []
with torch.no_grad():
end = time.time()
for epoch_step, (inputs, labels, filepath) in enumerate(dataloader):
filepath = filepath[0].split('/')[-1]
data_time.update(time.time()-end)
inputs = inputs.float().cuda()
labels = labels.long().cuda()
if flip:
idx = [i for i in range(inputs.shape[3] - 1, -1, -1)]
idx = torch.LongTensor(idx)
inputs = inputs[:,:,:,idx]
# forward
outputs = model(inputs)
if flip:
idx = [i for i in range(1024 - 1, -1, -1)]
idx = torch.LongTensor(idx)
outputs = outputs[:,:,:,idx]
all_predictions[epoch_step,:,:,:] = F.softmax(outputs,1)
all_labels[epoch_step,:,:] = labels
preds = torch.argmax(outputs, 1)
loss = criterion(outputs, labels)
# Statistics
bs = inputs.size(0) # current batch size
loss = loss.item()
loss_running.update(loss, bs)
corrects = torch.sum(preds == labels.data)
nvoid = int((labels==void).sum())
acc = corrects.double()/(bs*res-nvoid) # correct/(batch_size*resolution-voids)
acc_running.update(acc, bs)
# Calculate IoU scores of current batch
iou.evaluateBatch(preds, labels)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print progress info
progress.display(epoch_step)
all_filepaths.append(filepath)
miou = iou.outputScores()
print('Accuracy : {:5.3f}'.format(acc_running.avg))
print('---------------------')
return acc_running.avg, loss_running.avg, miou, all_predictions, all_labels, all_filepaths
model = EfficientSeg(enc_config=enc_config, dec_config=None, num_classes=len(MiniCity.validClasses),
width_coeff=6.0)
model = model.cuda()
model_state = "best_weights_effseg_minicity.tar"
image_predictions = torch.zeros((200,20,test_size[0],test_size[1])).float()
image_labels = torch.zeros((200,test_size[0],test_size[1])).long()
checkpoint = torch.load(model_state)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
testset = MiniCity('./minicity', split='val', transforms=test_trans)
dataloader_test = torch.utils.data.DataLoader(testset,
batch_size=1, shuffle=False,
pin_memory=True, num_workers=2)
val_acc, val_loss, miou, all_predictions, all_labels, all_filepaths = validate_epoch(dataloader_test,
model,
criterion, 0,
MiniCity.classLabels,
MiniCity.validClasses,
void=MiniCity.voidClass,
maskColors=MiniCity.mask_colors, flip=True, deg=None)
image_predictions += all_predictions.cpu()
image_labels = all_labels.cpu()
val_acc, val_loss, miou, all_predictions, all_labels, all_filepaths = validate_epoch(dataloader_test,
model,
criterion, 1,
MiniCity.classLabels,
MiniCity.validClasses,
void=MiniCity.voidClass,
maskColors=MiniCity.mask_colors, flip=False, deg=None)
image_predictions += all_predictions.cpu()
image_labels = all_labels.cpu()
preds = torch.argmax(image_predictions, 1)
iou = iouCalc(MiniCity.classLabels, MiniCity.validClasses, voidClass = MiniCity.voidClass)
iou.evaluateBatch(preds, image_labels)
miou = iou.outputScores()
for i in range(preds.shape[0]):
selected_filepath = all_filepaths[i]
selected_preds = preds[i,:,:]
pred_id = MiniCity.trainid2id[selected_preds]
pred_id = Image.fromarray(pred_id)
pred_id = pred_id.resize((2048, 1024), resample=Image.NEAREST)
pred_id.save('results/'+ selected_filepath)