-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongTermMemory.py
190 lines (151 loc) · 7.75 KB
/
LongTermMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from chromadb import PersistentClient, Client
from Nexus import NexusEmbeddingFunction, globalNexus
import datetime, time
from MemoryTypes import RecollectionLevel, MemoryLevel, MemoryEntry
from typing import List
from Logger import globalLogger, LogLevel
positive = ["yes", "sure", "ok", "okay", "yeah", "yup", "yep", "yea", "yah", "yas", "ya", "yap"]
negative = ["no", "nope", "nah", "nay", "nope", "nah", "nay"]
invalidChars = ["#", "@", "!", "$", "%", "^", "&", "*", "(", ")", "-", "_", "=", "+", "{", "}", "[", "]", "|", "\\", ":", ";", "'", "\"", "<", ">", ",", ".", "?", "/"]
positiveStr = " ".join(positive)
negativeStr = " ".join(negative)
class LongTermMemory(object):
def __init__(self):
self.path = './Memory/'
self.persistent = True
self.client = PersistentClient(self.path) if(self.persistent) else Client()
###############################################################
################### Discriminatory Memories ###################
###############################################################
if(self.persistent):
globalNexus.BeginShardBatch("Embeddings.Embeddings")
self.booleanDiscriminationMemory = self.client.get_or_create_collection("booleanDiscriminationMemory",
embedding_function=NexusEmbeddingFunction())
if(self.booleanDiscriminationMemory.count() == 0):
self.booleanDiscriminationMemory.add(documents=[negativeStr, positiveStr], ids=["0", "1"])
self.closestWordMemory = self.client.get_or_create_collection("closestWordMemory",
embedding_function=NexusEmbeddingFunction())
if(self.closestWordMemory.count() == 0):
with open("./models/vocab.txt", "r", encoding="utf-8") as f:
words = f.read().splitlines()
words = list(filter(lambda s: not any(s.startswith(c) for c in invalidChars) and len(s)>2, words))
ids = [f"id_{i}" for i in range(0, len(words))]
self.closestWordMemory.add(documents=words, ids=ids)
globalNexus.EndShardBatch("Embeddings.Embeddings")
###############################################################
################### Specialized Metadata ######################
###############################################################
def CreateEpisodicMetadata(self, conversationId, role, proxy, previous, next, id):
timestamp = int(time.mktime(datetime.datetime.now().timetuple()))
metadata={
"conversationId": str(conversationId),
"role": role,
"proxy": proxy,
"timestamp": timestamp,
"previous": previous,
"next": next,
"parent": "",
"id": id
}
return metadata
def CreateSimpleMetadata(self, conversationId, proxy, id):
timestamp = int(time.mktime(datetime.datetime.now().timetuple()))
metadata={
"conversationId": str(conversationId),
"proxy": proxy,
"timestamp": timestamp,
"parent": "",
"id": id
}
return metadata
###############################################################
################### Memory Manipulation ######################
###############################################################
def AccessMemoryLevel(self, proxy, memoryLevel):
if(proxy):
levelName = f"{proxy.name}_{memoryLevel}"
else:
levelName = f"system_{memoryLevel}"
memoryLevel = self.client.get_or_create_collection(levelName,
embedding_function=NexusEmbeddingFunction())
return memoryLevel
def QueryAll(self, proxy, memoryLevel, where = {}, queryTexts = [""]):
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
ct = memory.count()
if ct == 0:
return None
query =memory.query(query_texts=queryTexts, n_results=ct, where=where,include=['metadatas','documents', 'distances',])
return query
#I firmly refuse to use metadatas as a plural for metadata!!!!
def CommitToMemory(self, proxy, memoryLevel, documents, metadata, ids):
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
memory.upsert(documents=documents, metadatas=metadata, ids=ids)
def UpdateMemoryUniformMetadata(self, proxy,memoryLevel, query, metadata, maxRecords):
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
ids = memory.query(where=query, n_results=maxRecords, include=[])
metadataList = [metadata] * len(ids)
memory.update(ids=ids, metadatas=metadataList)
def UpdateMemoryMetadata(self, proxy, memoryLevel, ids, metadata):
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
memory.update(ids=ids, metadatas=metadata)
def Count(self, memoryLevel, where):
query = self.QueryAll(memoryLevel, where)
ids = query["ids"][0]
return len(ids)
def QueryDocuments(self, proxy, memoryLevel, where):
query = self.QueryAll(proxy, memoryLevel, where)
documents = query["documents"][0]
return documents
def GetItemsByTreshold(self, proxy, memoryLevel, threshold, queryText = "", where = {}) -> List[MemoryEntry]:
query = self.QueryAll(proxy, memoryLevel, where, queryTexts=[queryText])
if(query == None):
return None
ids = query["ids"][0]
count = len(ids)
list = []
for i in range(count):
if (query["distances"][0][i] <= threshold) or (threshold == 0):
entry = MemoryEntry.FromMemory(context = proxy.context, id = ids[i], content = query["documents"][0][i], metadata = query["metadatas"][0][i], distance=query["distances"][0][i])
list.append(entry)
return list
def UpsertConversationCollection(self, proxy, memoryLevel, conversationID, themeOrEntity):
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
conversationID = str(conversationID)
if not "|" in conversationID:
conversations = [conversationID]
else:
conversations = conversationID.split('|')
entry = memory.get(themeOrEntity)
globalLogger.log(logLevel=LogLevel.globalLog, message=entry)
if(len(entry["ids"][0]) == 0):
memory.add(documents=[themeOrEntity], ids=[themeOrEntity], metadatas=[{"conversations": conversationID}])
else:
entryConversations = entry["metadatas"][0]["conversations"].split('|')
conversations.extend(entryConversations)
conversations = list(set(conversations))
conversations = "|".join(conversations)
memory.update(
ids=[themeOrEntity],
documents=[themeOrEntity],
metadatas={"conversations": conversations},
)
def GetUnparentedMemories(self, proxy, memoryLevel):
query = self.QueryAll(proxy = proxy, memoryLevel=memoryLevel, where={"parent": ""}, queryTexts=[""])
documents = "\n".join(query["documents"][0])
ids = "|".join(query["ids"][0])
return documents, ids
def AssignParentToMemories(self, proxy, memoryLevel, clusterId):
query = self.QueryAll(proxy = proxy, memoryLevel=memoryLevel, where={"parent": ""}, queryTexts=[""])
memory = self.AccessMemoryLevel(memoryLevel=memoryLevel, proxy=proxy)
for i in range(len(query["ids"][0])):
metadata = query["metadatas"][0][i]
metadata["parent"] = clusterId
memory.update(ids=query["ids"][0], metadatas=query["metadatas"][0])
def TabulaRasa(self, proxy):
levels = [x.name for x in MemoryLevel.__members__.values()]
for level in levels:
self.client.delete_collection(f"{proxy.name}_{level}")
#############################################################
################## Long Term Memory Object ####################
###############################################################
longTermMemory = LongTermMemory()