-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmain.py
297 lines (255 loc) · 9.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os # dealing with directories
import matplotlib.pyplot as plt # for visualizations
import numpy as np # arrays
import pandas as pd # for manipulating data
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from sklearn.metrics import roc_auc_score
from torch.utils.data import DataLoader, Dataset
from utils.helpers import (create_transform, prepare_train_valid_test,
unzip_input_file)
# HYPERPARAMETERS
# our photos are in the size of (80,80,3)
IMG_SIZE = 80
IMG_SIZE_ALEXNET = 227
SHOWN_IMAGE_COUNT = 64
columns = 8
rows = 8
# hyperparameters
hidden_size = 100
num_epochs = 50
batch_size = 32
learning_rate = 3e-5
UNZIP = False
BASE_DIR = os.getcwd()
# Current working directory
# Our dataset class
class CustomDataset(Dataset):
def __init__(self, arr, transform=None) -> None:
self.x = [Image.fromarray(i[0], "RGB") for i in arr]
self.y = np.array([i[1].argmax() for i in arr])
self.transform = transform
self.n_samples = len(self.x)
def __getitem__(self, index):
y_label = self.y[index]
if self.transform:
img = self.transform(self.x[index])
return img, y_label
def __len__(self):
return self.n_samples
# Declaring model
class AlexNet(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=3, out_channels=96, kernel_size=(11, 11), stride=4
)
self.relu = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=96, out_channels=256, kernel_size=(5, 5), stride=1, padding=2
)
self.pool2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
self.conv3 = nn.Conv2d(
in_channels=256, out_channels=384, kernel_size=(3, 3), stride=1, padding=1
)
self.conv4 = nn.Conv2d(
in_channels=384, out_channels=384, kernel_size=(3, 3), stride=1, padding=1
)
self.conv5 = nn.Conv2d(
in_channels=384, out_channels=256, kernel_size=(3, 3), stride=1, padding=1
)
self.pool3 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
self.dropout = nn.Dropout(p=0.5)
self.fc1 = nn.Linear(in_features=256 * 6 * 6, out_features=4096)
self.fc2 = nn.Linear(in_features=4096, out_features=4096)
self.fc3 = nn.Linear(in_features=4096, out_features=4)
def forward(self, x):
x = self.pool1(self.relu(self.conv1(x)))
x = self.pool2(self.relu(self.conv2(x)))
x = self.relu(self.conv3(x))
x = self.relu(self.conv4(x))
x = self.pool3(self.relu(self.conv5(x)))
x = self.dropout(x)
x = x.reshape(-1, 256 * 6 * 6)
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def training(
train_loader,
device,
model,
optimizer,
epoch,
criterion,
training_loss_list,
num_steps,
):
model.train()
for i, (images, labels) in enumerate(train_loader):
# moving input and output to device
images = images.to(device)
labels = labels.to(device)
# forward
outputs = model(images)
loss = criterion(outputs, labels)
training_loss_list.append(loss.item())
# set gradients to 0 first
optimizer.zero_grad()
# back propogate gradients
loss.backward()
# update weights via learning rate and gradients
optimizer.step()
if (i + 1) % num_steps == 0:
print(f"train; epoch={epoch+1}, training loss = {np.round(loss.item(),4)}")
def evaluation(model, device, loader, criterion, validation_loss_list, epoch=None, validation=True):
model.eval()
with torch.no_grad():
n_correct = 0
n_samples = 0
loss_all = 0
for images, labels in loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
validation_loss_list.append(loss.item())
loss_all += loss.item()
# value, index
_, predictions = torch.max(outputs, 1)
n_samples += labels.shape[0]
n_correct += (predictions == labels).sum().item()
acc = 100.0 * n_correct / n_samples
avg_loss = loss_all / len(loader)
if validation:
print(
f"valid; epoch={epoch+1}, valid loss = {round(float(avg_loss),4)}, accuracy = {np.round(acc,4)} \n"
)
else:
print(
f"test scores, valid loss = {round(float(avg_loss),4)}, accuracy = {np.round(acc,4)} \n"
)
def plot_loss_train_valid(training_loss_list, validation_loss_list):
f, ax = plt.subplots(1, 2, figsize=(12, 3))
pd.Series(training_loss_list).rolling(50).mean().plot(
kind="line", title="Accuracy on CV data", ax=ax[0]
)
pd.Series(validation_loss_list).rolling(50).mean().plot(
kind="line", title="Loss on CV data", ax=ax[1]
)
plt.subplots_adjust(wspace=0.8)
ax[0].set_title("Loss on train data")
ax[1].set_title("Loss on CV data")
plt.show()
def get_test_preds(model, loader, device):
model.eval()
with torch.no_grad():
test_classes = []
test_preds = []
for images, labels in loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predictions = torch.max(outputs, 1)
test_classes.append(labels)
test_preds.append(predictions)
test_classes = np.hstack([x.cpu().numpy() for x in test_classes])
test_preds = np.hstack([x.cpu().numpy() for x in test_preds])
return test_preds
def plot_some_preds(SHOWN_IMAGE_COUNT, columns, rows, test_preds, test_data):
pred_labels = []
for i in range(SHOWN_IMAGE_COUNT):
r = test_preds[i]
if r == 0:
pred_labels.append("chair")
elif r == 1:
pred_labels.append("kitchen")
elif r == 2:
pred_labels.append("knife")
elif r == 3:
pred_labels.append("saucepan")
# First 64 images
shown_images = [x[0] for x in test_data[:SHOWN_IMAGE_COUNT]]
fig = plt.figure(figsize=(20, 20))
for m in range(1, columns * rows + 1):
img = shown_images[m - 1].reshape([IMG_SIZE_ALEXNET, IMG_SIZE_ALEXNET, 3])
fig.add_subplot(rows, columns, m)
plt.imshow(img)
plt.title("Pred: " + pred_labels[m - 1])
plt.axis("off")
plt.show()
def main():
# Unzipping file
if UNZIP:
unzip_input_file("datasets.zip")
# prepare data
train, cv, test_data = prepare_train_valid_test(
BASE_DIR,
"datasets",
"train_data_mc.npy",
"test_data_mc.npy",
IMG_SIZE_ALEXNET,
train_size=4800,
)
transform = create_transform()
train_dataset = CustomDataset(train, transform)
valid_dataset = CustomDataset(cv, transform)
test_dataset = CustomDataset(test_data, transform)
train_loader = DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True
)
valid_loader = DataLoader(
dataset=valid_dataset, batch_size=batch_size, shuffle=False
)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# setting device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# move model to cuda
model = AlexNet().to(device)
# define loss function
criterion = nn.CrossEntropyLoss()
# define optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# setting step count
num_steps = len(train_loader)
# some empty dicts to monitor losses during training and testing
training_loss_list = []
validation_loss_list = []
# training loop
for epoch in range(num_epochs):
# training phase
training(
train_loader,
device,
model,
optimizer,
epoch,
criterion,
training_loss_list,
num_steps,
)
# evaluation on valid
evaluation(
model=model,
device=device,
loader=valid_loader,
criterion=criterion,
validation_loss_list=validation_loss_list,
epoch=epoch,
validation=True,
)
# evaluation on test
# evaluation(
# model=model, device=device, loader=test_loader, epoch=None, validation=False
# )
plot_loss_train_valid(training_loss_list, validation_loss_list)
# convert list to numpy array
test_preds = get_test_preds(model=model, loader=test_loader, device=device)
plot_some_preds(SHOWN_IMAGE_COUNT, columns, rows, test_preds, test_data)
if __name__ == "__main__":
main()