-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpcc_fig2_allLimbicN1.m
285 lines (237 loc) · 16 KB
/
pcc_fig2_allLimbicN1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
clearvars, clc, close all
%% Plot mean waveforms across subjects
% Dependencies: matmef and vistasoft github repositories.
% cd to HAPwave repo
addpath(genpath(pwd))
% set local path to your BIDS directory:
myPath = setLocalDataPath(1);
localDataPath = myPath.input;
% load the metadata
all_subjects = {'01','02','03','04','05','06','07','08'}; % List of subjects
all_hemi = {'r','r','r','l','r','l','l','r'}; % List of hemispheres
all_runs = {'01','01','01','01','01','01','01','01'}; % List of runs
for ss = 1:length(all_subjects)
bids_sub = all_subjects{ss};
bids_ses = 'ieeg01';
bids_task = 'ccep';
bids_run = all_runs{ss};
% Load metadata and stats
[events_table,channels_table,electrodes_table,sub_out] = pcc_loadAveragesStats(localDataPath,bids_sub,bids_ses,bids_task,bids_run);
all_out(ss) = sub_out;
end
%% Correct P values for number of comparisons in each subject
% Fisrt load the limbic codes in both right and left hemis
area_codes = {[12123 53 54 12108 12109 12110 12106 12107 59 ...
11123 17 18 11108 11109 11110 11106 11107 10]};
nr_subs = length(all_subjects);
% Loop over subjects
for ss = 1:nr_subs
% List sites that belong to the recording ROI (measured_area)
these_measured_sites = find(ismember(all_out(ss).channel_areas,area_codes{1}));
% List sites that belong to the stimulated ROI (stim_area)
these_stim_sites = find(ismember(all_out(ss).average_ccep_areas(:,1),area_codes{1})...
| ismember(all_out(ss).average_ccep_areas(:,2),area_codes{1}));
% prepare for correction of multiple comparisons of p-values
all_out(ss).hasdata = NaN(size(all_out(ss).crp_out));
all_out(ss).crp_p = NaN(size(all_out(ss).crp_out));
all_out(ss).a_prime = NaN(size(all_out(ss).crp_out));
all_out(ss).cod = NaN(size(all_out(ss).crp_out));
all_out(ss).crp_p_adj = NaN(size(all_out(ss).crp_out));
all_out(ss).h = NaN(size(all_out(ss).crp_out));
all_out(ss).avg_trace_tR = zeros(size(all_out(ss).average_ccep));
% loop over measured sites
for kk = 1:length(these_measured_sites)
% loop over the stimulated pairs
for ll = 1:length(these_stim_sites)
if ~isempty(all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).data) % we have CRPs
all_out(ss).hasdata(these_measured_sites(kk), these_stim_sites(ll)) = 1; % is significant
all_out(ss).crp_p(these_measured_sites(kk), these_stim_sites(ll)) = all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).crp_projs.p_value_tR; % p-value
all_out(ss).a_prime(these_measured_sites(kk), these_stim_sites(ll)) = mean(all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).crp_parms.al_p); % mean
all_out(ss).cod(these_measured_sites(kk), these_stim_sites(ll)) = median(all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).crp_parms.cod); % CRP coefficent of determination
sig_timepoints = find(all_out(ss).tt>0.015 & all_out(ss).tt<=all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).crp_parms.tR); % response duration
all_out(ss).avg_trace_tR(these_measured_sites(kk), these_stim_sites(ll),sig_timepoints) = all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).crp_parms.C; % al_p for tR
else
all_out(ss).hasdata(these_measured_sites(kk), these_stim_sites(ll)) = 0; % is not significant
end
end
end
pvals = all_out(ss).crp_p(all_out(ss).hasdata==1); % get pVals
qq = 0.05; % false discovery rate
[h, crit_p, adj_ci_cvrg, adj_p] = fdr_bh(pvals,qq,'dep','no'); % Benjamini & Yekutieli FDR correction
all_out(ss).crp_p_adj(all_out(ss).hasdata==1) = adj_p; % Adjusted pVals
all_out(ss).h(all_out(ss).hasdata==1) = h; % adjusted pVal is significant
end
%% Load stim and measure sites and find N1 responses
% Sort limbic codes by hemisphere
area_names = {'Hipp','Amyg','PCC','ACC'};
area_codes_r = {[12123 53],[54],[12108 12109 12110],[12106 12107]}; % right
area_codes_l = {[11123 17],[18],[11108 11109 11110],[11106 11107]}; % left
out = []; % prepare an AreaByArea structure, with all subjects concatinated for each area
subj_resp_total = zeros(nr_subs,1); % prepare for total of adjusted FDR per connection (stim->measured)
t_win_norm = [0.015 0.500]; % window for pre-processing
tt = all_out(ss).tt;
for measure_ind = 1:length(area_names) % loop through measured sites
for stim_ind = 1:length(area_names) % now go through stimulated sites
resp_counter = 0; % count all responses across subjects for this connection (stim->measured pair)
for ss = 1:nr_subs % loop over subjects
% which hemisphere has coverage
if isequal(all_hemi{ss},'l')
area_codes = area_codes_l;
elseif isequal(all_hemi{ss},'r')
area_codes = area_codes_r;
end
% Get sites in recording ROI (measured_area)
these_measured_sites = find(ismember(all_out(ss).channel_areas,area_codes{measure_ind}));
% Get sites in stimulated ROI (stim_area)
these_stim_sites = find(ismember(all_out(ss).average_ccep_areas(:,1),area_codes{stim_ind}) | ...
ismember(all_out(ss).average_ccep_areas(:,2),area_codes{stim_ind}));
% loop over measured sites
for kk = 1:length(these_measured_sites)
% loop over the stimulated pairs
for ll = 1:length(these_stim_sites)
if ~isempty(all_out(ss).crp_out(these_measured_sites(kk), these_stim_sites(ll)).data)
subj_resp_total(ss) = subj_resp_total(ss) + 1; % counting pair for multiple comparison correction per subject
% first get raw responses
plot_responses = squeeze(all_out(ss).average_ccep(these_measured_sites(kk), these_stim_sites(ll), :));
% Is there an N1?
params.amplitude_thresh = 3.4; % standard deviations 3.4;
params.n1_peak_range = 0.050; % in s
params.baseline_tt = tt>-.5 & tt<-.020;
params.peakSign = 1;
% amplitudeThresh is in microvolts, used if standard devisation from baseline is smaller than this value
% threshold for responses is (amplitude_thresh * amplitudeThresh) is baseline STD < amplitudeThresh
% threshold for responses is (amplitude_thresh * baseline STD) is baseline STD > amplitudeThresh
params.amplitudeThresh = 10;
[posn1_peak_sample,posn1_peak_amplitude,posn1_peak_time] = ccep_detect_n1peak_sEEG(plot_responses,tt,params);
params.peakSign = -1;
[negn1_peak_sample,negn1_peak_amplitude,negn1_peak_time] = ccep_detect_n1peak_sEEG(plot_responses,tt,params);
% Keep earliest peak
if ~isnan(posn1_peak_time) && ~isnan(negn1_peak_time) % if both positive and negative
if posn1_peak_time < negn1_peak_time % positive is earlier
n1_peak_amplitude = posn1_peak_amplitude;
n1_peak_time = posn1_peak_time;
n1_peak_sample = posn1_peak_sample;
elseif negn1_peak_time < posn1_peak_time % negative is earlier
n1_peak_amplitude = negn1_peak_amplitude;
n1_peak_time = negn1_peak_time;
n1_peak_sample = negn1_peak_sample;
end
elseif ~isnan(posn1_peak_time) && isnan(negn1_peak_time) % positive peak
n1_peak_amplitude = posn1_peak_amplitude;
n1_peak_time = posn1_peak_time;
n1_peak_sample = posn1_peak_sample;
elseif ~isnan(negn1_peak_time) && isnan(posn1_peak_time) % negative peak
n1_peak_amplitude = negn1_peak_amplitude;
n1_peak_time = negn1_peak_time;
n1_peak_sample = negn1_peak_sample;
else
n1_peak_amplitude = NaN;
n1_peak_time = NaN;
n1_peak_sample = NaN;
end
% save counts
resp_counter = resp_counter + 1;
% get N1 params
out(measure_ind,stim_ind).n1ampl(resp_counter, :) = n1_peak_amplitude;
out(measure_ind,stim_ind).n1time(resp_counter, :) = n1_peak_time;
out(measure_ind,stim_ind).n1sample(resp_counter, :) = n1_peak_sample;
% get CCEP responses for plotting
% Scaling to unit length (Euclidean lenght): https://en.wikipedia.org/wiki/Feature_scaling
% unit length taken in same window as stats
response_vector_length = sum(plot_responses(all_out(ss).tt > t_win_norm(1) & all_out(ss).tt < t_win_norm(2)) .^ 2) .^ .5;
plot_responses_norm = plot_responses ./ (response_vector_length * ones(size(plot_responses))); % normalize (L2 norm) each trial
% save waveform
out(measure_ind,stim_ind).plot_responses_norm(resp_counter, :) = plot_responses_norm;
% save subject index
out(measure_ind,stim_ind).subj_ind(resp_counter, :) = ss;
% save CRP stuff one layer out
out(measure_ind,stim_ind).p(resp_counter, :) = all_out(ss).crp_p_adj(these_measured_sites(kk), these_stim_sites(ll));
out(measure_ind,stim_ind).cod(resp_counter, :) = all_out(ss).cod(these_measured_sites(kk), these_stim_sites(ll));
out(measure_ind,stim_ind).a_prime(resp_counter, :) = all_out(ss).a_prime(these_measured_sites(kk), these_stim_sites(ll));
end
end
end
end
end
end
%% plot CCEPs and confidence interval
% Plot pannels in figure 2. Each plot containing the average waveform of
% limbic connections (all stimulated and all measured sites) across subjects
figure('Position',[0 0 1000 800]), hold on
for measure_ind = 1:length(area_codes) % loop over measured sites
for stim_ind = 1:length(area_codes) % loop over stimulated sites
subplot(length(area_codes), length(area_codes), (measure_ind-1) * length(area_codes) + stim_ind),hold on
sign_resp = out(measure_ind,stim_ind).p < 0.05; % adjusted for multiple comparisons
this_set = out(measure_ind,stim_ind).plot_responses_norm(sign_resp==1,:)';
% Plot average waveform and confidence interval (all mean responses
% -from 10 to 12 trials- across subs optional)
plot(tt(tt>.015 & tt<1), zeros(size(tt(tt>.015 & tt<1))),'k:') % plot zero line
% plot(tt,this_set,'color',[.5 .5 .5 .2]) % OPTIONAL plot all connections
plot(tt,mean(this_set,2), 'color','k', 'LineWidth',1) % plot mean of all connections
plotCurvConf(tt, this_set',[],'0.5'); % plots 95% Confidende interval in gray with 50% transparency
xlim([0 1]),ylim([-0.08 0.08])
title(['stim:' area_names{stim_ind} ' rec:' area_names{measure_ind} ])
end
xlim([0 1]),ylim([-0.08 0.08])
end
%% Get proportion of N1s and significant responses (using the CRPs method)
% Plot bars with total of responses, percentage of N1s (of total responses),
% and percentage of significant responses based on the CRP method
figure('Position',[0 0 300 800],'Name','All N1s & all CRP.'), hold on
for measure_ind = 1:length(area_codes)
for stim_ind = 1:length(area_codes)
subplot(length(area_codes), length(area_codes), (measure_ind-1) * length(area_codes) + stim_ind),hold on
% find all CRP-significant
sign_resp = out(measure_ind,stim_ind).p<0.05; % adjusted for multiple comparisons
% find all N1s
n1s = ~isnan(out(measure_ind,stim_ind).n1ampl); % found and N1 (pos or neg)
sum_cceps = length(out(measure_ind,stim_ind).p); % total nr of CCEPs
bar(100,'FaceColor',[.9 .9 .9]) % plot bar representing all responses
text(.7,sum_cceps,{sum_cceps},'color',[.5 .5 .5],...
'HorizontalAlignment','center','VerticalAlignment','bottom')
% Plot bar of significant CRP-based
sum_CRPs = sum(sign_resp);
prop_CRPs = 100 * sum_CRPs / sum_cceps;
bar(prop_CRPs,'FaceColor',[0 0.4470 0.7410]) % plot bar with sig CRP
text(1,prop_CRPs,{prop_CRPs},'color',[0 0.4470 0.7410],...
'HorizontalAlignment','center','VerticalAlignment','bottom')
% now let's do N1s
sum_N1s = sum(n1s);
prop_N1s = 100 * sum_N1s / sum_cceps;
bar(prop_N1s,'FaceColor',[0.92 0.69 0.12]) % plot bar with N1s
text(1,prop_N1s,{prop_N1s},'color',[0.92 0.69 0.12],...
'HorizontalAlignment','left','VerticalAlignment','bottom')
ylim([0 101])
end
end
%% Now get proportion of N1s of all CRPs
% Plot bars with total of responses, percentage of significant responses
% based on the CRP method, and percentage of N1s detected from the
% CRP-significant responses.
figure('Position',[0 0 300 800],'Name','N1 only if resp. sign.'), hold on
for measure_ind = 1:length(area_codes)
for stim_ind = 1:length(area_codes)
subplot(length(area_codes), length(area_codes), (measure_ind-1) * length(area_codes) + stim_ind),hold on
% find all significant responses (CRP-based)
sign_resp = out(measure_ind,stim_ind).p<0.05; % adjusted for multiple comparisons CRP-based
% find all N1s
n1s = ~isnan(out(measure_ind,stim_ind).n1ampl) & sign_resp; % found detected n1 AND significant CRP-based
bar(100,'FaceColor',[.9 .9 .9]) % plot bar with all responses?
sum_cceps = length(out(measure_ind,stim_ind).p); % total nr of CCEPs
text(.7,sum_cceps,{sum_cceps},'color',[.5 .5 .5],...
'HorizontalAlignment','center','VerticalAlignment','bottom')
% Plot bar of significant CRP-based
sum_CRPs = sum(sign_resp);
prop_CRPs = 100*sum_CRPs/sum_cceps;
bar(prop_CRPs,'FaceColor',[0 0.4470 0.7410]) % plot bar with sig CRP
text(1,prop_CRPs,{prop_CRPs},'color',[0 0.4470 0.7410],...
'HorizontalAlignment','center','VerticalAlignment','bottom')
% now let's do N1s
sum_N1s = sum(n1s);
prop_N1s = 100*sum_N1s/sum_cceps;
bar(prop_N1s,'FaceColor',[0.92 0.69 0.12]) % plot bar with N1s
text(1,prop_N1s,{prop_N1s},'color',[0.92 0.69 0.12],...
'HorizontalAlignment','left','VerticalAlignment','bottom')
ylim([0 101])
end
end