forked from michaelgreenacre/CODAinPractice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtellus_CoDA_script.R
832 lines (734 loc) · 37 KB
/
tellus_CoDA_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
### -----------------------------------------------------------------------
### "Aitchison's Compositional Data Analysis 40 years On: A Reappraisal"
### This is the analysis of Tellus cation data with zeros
### Set your working directory where the data have been donwloaded
### Software note:
### package easyCODA required
library(easyCODA)
### For the FINDALR function, either make sure you have the latest version of easyCODA
### (presently version 0.35.1 on RForge)
### or if you have installed from CRAN include the function directly from GitHub as follows:
### source("https://raw.githubusercontent.com/michaelgreenacre/CODAinPractice/master/FINDALR.R")
TELLUS <- read.table("tellus.xrf.a.cation.txt", header=TRUE)
dim(TELLUS)
# [1] 6799 61
colnames(TELLUS)
# [1] "Sample" "Easting" "Northing" "Unitname" "AgeBracket" "col"
# [7] "ab" "pH" "LOI" "Si" "Al" "Fe"
# [13] "Mg" "Mn" "Ca" "Na" "K" "P"
# [19] "Ti" "S" "Ag" "As" "Ba" "Bi"
# [25] "Br" "Cd" "Ce" "Cl" "Co" "Cr"
# [31] "Cs" "Cu" "Ga" "Ge" "Hf" "I"
# [37] "In" "La" "Mo" "Nb" "Nd" "Ni"
# [43] "Pb" "Rb" "Sb" "Sc" "Se" "Sm"
# [49] "Sn" "Sr" "Ta" "Te" "Th" "Tl"
# [55] "U" "V" "W" "Y" "Yb" "Zn"
# [61] "Zr"
### Age Brackets (AB)
table(TELLUS[,7])
# CzOl CzPl Mes NeoP Pg Pl PlCr PlDv PlOr PlSi
# 154 1691 330 1013 124 170 1534 304 1311 168
AB <- as.numeric(factor(TELLUS[,7]))
table(AB)
# 1 2 3 4 5 6 7 8 9 10
# 154 1691 330 1013 124 170 1534 304 1311 168
ABnames <- unique(TELLUS[,7])
ABnames <- sort(ABnames)
### Tellus cation data, with zeros
tellus0 <- TELLUS[,10:61]
dim(tellus0)
# [1] 6799 52
### Number of zeros and percentage of total
sum(tellus0==0)
# [1] 3883
100*sum(tellus0==0)/(nrow(tellus0)*ncol(tellus0))
# [1} 1.098295
colSums(tellus0==0)
# Si Al Fe Mg Mn Ca Na K P Ti S Ag As Ba Bi Br Cd Ce
# 0 0 0 0 0 0 0 0 0 0 2535 0 1 0 480 0 0 0
# Cl Co Cr Cs Cu Ga Ge Hf I In La Mo Nb Nd Ni Pb Rb Sb
# 0 0 0 0 2 48 0 0 0 0 0 92 0 581 0 0 0 0
# Sc Se Sm Sn Sr Ta Te Th Tl U V W Y Yb Zn Zr
# 41 0 0 0 0 59 0 1 0 10 0 33 0 0 0 0
### Number of samples with some zeros
length(which(rowSums(tellus0==0)>0))
# [1] 3303
table(rowSums(tellus0==0))
# 0 1 2 3 4 5
# 3496 2851 332 113 6 1
### minimum positive values observed
tellus.min <- min(tellus0[tellus0[,1]>0,1])
for(j in 2:52) tellus.min <- c(tellus.min, min(tellus0[tellus0[,j]>0,j]))
### replace by 2/3 minimum positive value to form matrix tellus
tellus <- tellus0
for(j in 1:52) {
if(sum(tellus0[,j]==0) > 0) {
for(i in 1:nrow(tellus)) tellus[tellus0[,j]==0,j] <- tellus.min[j]*2/3
}
}
sum(tellus==0)
# [1] 0
### Data matrices are tellus: with replaced values; tellus0: with zeros
### .pro are the normalized/closed profiles
tellus.pro <- tellus/rowSums(tellus)
tellus0.pro <- tellus0/rowSums(tellus0)
### Negative correlations in the original Tellus data and closed data
tellus0.cor <- cor(tellus0)
sum(as.dist(tellus0.cor)<0)/length(as.dist(tellus0.cor))
# [1] 0.387632
tellus0.pro.cor <- cor(tellus0.pro)
sum(as.dist(tellus0.pro.cor)<0)/length(as.dist(tellus0.pro.cor))
# [1] 0.3989442
### Table of positive and negative correlations in original and closed data
table(as.dist(tellus0.cor)>0, as.dist(tellus0.pro.cor)>0)
# FALSE TRUE
# FALSE 307 207
# TRUE 222 590
### average percentages of elements
round(100*colMeans(tellus.pro),5)
# Si Al Fe Mg Mn Ca Na K P
# 66.71287 17.22345 4.76249 3.06781 0.09769 1.83961 2.36898 2.30087 0.31112
# Ti S Ag As Ba Bi Br Cd Ce
# 0.75834 0.35673 0.00003 0.00133 0.02041 0.00002 0.00855 0.00005 0.00223
# Cl Co Cr Cs Cu Ga Ge Hf I
# 0.06613 0.00209 0.02024 0.00021 0.00530 0.00142 0.00014 0.00024 0.00080
# In La Mo Nb Nd Ni Pb Rb Sb
# 0.00002 0.00118 0.00007 0.00104 0.00076 0.00640 0.00237 0.00460 0.00009
# Sc Se Sm Sn Sr Ta Te Th Tl
# 0.00216 0.00012 0.00029 0.00021 0.00758 0.00004 0.00001 0.00018 0.00003
# U V W Y Yb Zn Zr
### rare earth correlations vs. in full composition
rare <- c(29, 18, 32, 37, 39, 49, 50, 44, 46)
tellus0.rare.pro <- CLOSE(tellus0.pro[,rare])
round(cor(tellus0.rare.pro), 3)
# La Ce Nd Sc Sm Y Yb Th U
# La 1.000 0.920 0.218 -0.910 0.328 -0.344 0.292 0.625 0.412
# Ce 0.920 1.000 0.176 -0.910 0.353 -0.368 0.319 0.618 0.398
# Nd 0.218 0.176 1.000 -0.396 -0.694 0.123 -0.722 0.328 -0.249
# Sc -0.910 -0.910 -0.396 1.000 -0.224 0.069 -0.186 -0.724 -0.464
# Sm 0.328 0.353 -0.694 -0.224 1.000 -0.312 0.990 -0.032 0.603
# Y -0.344 -0.368 0.123 0.069 -0.312 1.000 -0.300 0.056 -0.028
# Yb 0.292 0.319 -0.722 -0.186 0.990 -0.300 1.000 -0.046 0.588
# Th 0.625 0.618 0.328 -0.724 -0.032 0.056 -0.046 1.000 0.311
# U 0.412 0.398 -0.249 -0.464 0.603 -0.028 0.588 0.311 1.000
round(cor(tellus0.pro[,rare]), 3)
# La Ce Nd Sc Sm Y Yb Th U
# La 1.000 0.892 0.830 -0.208 0.175 0.479 0.117 0.612 0.332
# Ce 0.892 1.000 0.741 -0.167 0.173 0.403 0.129 0.551 0.251
# Nd 0.830 0.741 1.000 0.033 -0.207 0.627 -0.263 0.546 0.233
# Sc -0.208 -0.167 0.033 1.000 -0.074 0.313 -0.044 -0.388 -0.149
# Sm 0.175 0.173 -0.207 -0.074 1.000 0.032 0.985 -0.009 0.322
# Y 0.479 0.403 0.627 0.313 0.032 1.000 0.024 0.459 0.543
# Yb 0.117 0.129 -0.263 -0.044 0.985 0.024 1.000 -0.036 0.312
# Th 0.612 0.551 0.546 -0.388 -0.009 0.459 -0.036 1.000 0.429
# U 0.332 0.251 0.233 -0.149 0.322 0.543 0.312 0.429 1.000
### should we weight the parts?
tellus.clr.unw <- CLR(tellus.pro, weight=FALSE)$LR
tellus.clr.unw.var <- apply(tellus.clr.unw, 2, var)
tellus.pro.cm <- colMeans(tellus.pro)
### ---------------------------------------------------
### Figure 4: plotting CLR variances against part means
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_4.pdf", width=5, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), font.lab=2, las=1, mfrow=c(1,1))
plot(tellus.pro.cm, tellus.clr.unw.var, log="xy", type="n",
xlab="Average compositional values (log-scale)", ylab="Variance of CLR (log-scale)")
text(tellus.pro.cm, tellus.clr.unw.var, labels=colnames(tellus), col="red", font=4, cex=0.8)
# dev.off()
### ---------------------------------------------------
### seems like unweighted OK: no tendency for rarer elements to have much higher variance
### in fact Al, the second highest component, has the lowest CLR variance
### variances and their contributions to total
TotVar <- mean(tellus.clr.unw.var)
TotVar
# [1] 0.3446613
### sort the part contributions to variance
sort(100*tellus.clr.unw.var/sum(tellus.clr.unw.var), decreasing=TRUE)
# Nd Br S Cl Mn Ni I Cr
# 10.9354250 5.5526814 5.5490654 5.3977073 5.1673774 4.2466589 3.8078010 3.4451737
# Rb Cu Co Ga Pb Sc Se Cd
# 3.4010389 2.9310840 2.8993020 2.6291876 2.1762499 2.0443790 2.0355740 2.0174516
# : : : : : : : :
# : : : : : : : : Sm Nb Ge Al
# Sm Nb Ge Al
# 0.3686688 0.3586418 0.3582653 0.1494869
### find the denominator part for an ALR transformation
(tellus.findalr <- FINDALR(tellus.pro))
# $tot.var
# [1] 0.3446107
# $procrust.cor
# [1] 0.9662964 0.9907692 0.9339259 0.9545244 0.8336251 0.8938565 0.8945049 0.9181235 0.9289943
# [10] 0.9633254 0.8580249 0.9636980 0.8731239 0.9593046 0.8155351 0.8670293 0.8849160 0.9726034
# [19] 0.8794430 0.8981615 0.8811368 0.9300113 0.8417604 0.8948470 0.9663585 0.9619381 0.8150313
# [28] 0.9465207 0.9696384 0.8760541 0.9826409 0.7984858 0.8619365 0.8771585 0.8727109 0.9585282
# [37] 0.8797559 0.9212887 0.9892701 0.9690770 0.8738061 0.8632258 0.9623934 0.9128071 0.9812157
# [46] 0.9062143 0.9344361 0.9084048 0.9631968 0.9889152 0.8965161 0.9197674
# $procrust.max
# [1] 0.9907692
# $procrust.ref
# [1] 2
# $var.log
# [1] 0.01105921 0.03038162 0.33140143 0.17374619 0.95729658 0.39101702 0.20187174 0.21395846 0.14493670
# [10] 0.13661518 1.33979835 0.18759453 0.43182290 0.07191086 0.34766988 1.34610010 0.53016945 0.08702211
# [19] 1.24307113 0.60417549 0.63413672 0.24444501 0.63733602 0.41873633 0.12317329 0.05033178 0.97267331
# [28] 0.27404725 0.09099433 0.20412732 0.05161335 1.79752728 0.87174489 0.58182783 0.46392747 0.24809741
# [37] 0.41898994 0.59088562 0.12563614 0.18092795 0.24537927 0.27541449 0.16340938 0.26874333 0.16899488
# [46] 0.30902500 0.36712962 0.35735229 0.10523465 0.12860962 0.34451145 0.17111440
# $var.min
# [1] 0.01105921
# $var.ref
# [1] 1
### (notice that Si has lowest variance of log, but Al had lowest variance of CLR
### Al has highest Procrustes correlation and the second lowest variance of log
### 5-number summary of log(Al)
quantile(log(tellus.pro[,"Al"]), c(0.025, 0.25, 0.5, 0.75, 0.975))
# 2.5% 25% 50% 75% 97.5%
# -2.179636 -1.863984 -1.758703 -1.658929 -1.480048
### -------------------------------------------------
### Figure 5: diagnosis of the reference part for ALR
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_4.pdf", width=5, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), font.lab=2, las=1, mfrow=c(1,1))
plot(tellus.findalr$var.log, tellus.findalr$procrust.cor, ylim=c(0.8,1),
xlab="Variance of log", ylab="Procrustes correlation")
points(tellus.findalr$var.log[2], tellus.findalr$procrust.cor[2], col="red", pch=21, bg="red")
points(tellus.findalr$var.log[1], tellus.findalr$procrust.cor[1], col="blue", pch=21, bg="blue")
text(tellus.findalr$var.log[2], tellus.findalr$procrust.cor[2], col="red", label="Al", pos=3, font=4)
text(tellus.findalr$var.log[1], tellus.findalr$procrust.cor[1], col="blue", label="Si", pos=3, font=4)
# dev.off()
### -------------------------------------------------
### ordering in terms of ALR variances (ALRs w.r.t. Al)
tellus.alr <- ALR(tellus.pro, denom=2, weight=FALSE)$LR
tellus.order.alr <- order(apply(tellus.alr, 2, var), decreasing=TRUE)
tellus.log <- log(tellus.pro[,c(1,3:52)])
### -------------------------------------------------------
### Figure S1: all log-transforms versus ALRs w.r.t. ref Al
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_S1.pdf", width=6, height=11, useDingbats=FALSE, family="ArialMT")
### use a very tall vertical window to fit in the 51 plots in a 9-by-6 grid
par(mar=c(1,0.5,2,0.5), mgp=c(2,0.7,0), cex.axis=0.8, mfrow=c(9,6))
for(j in 1:51) plot(tellus.alr[,tellus.order.alr[j]], tellus.log[,tellus.order.alr[j]],
main=colnames(tellus)[-2][tellus.order.alr[j]], cex=0.4,
ylab="", xlab="", xaxt="n",yaxt="n", col="lightblue")
# dev.off()
### -------------------------------------------------------
### comparing distances between two samples using all logratios and using the ALRs
tellus.clr.unw <- CLR(tellus.pro, weight=FALSE)$LR
tellus.alr <- ALR(tellus.pro, denom=2, weight=FALSE)$LR
### using 10000 random distance pairs
foo <- matrix(0, nrow=10000, ncol=2)
k <- 1
set.seed(123)
sample1 <- sample(1:6799, 10000, replace=TRUE)
sample2 <- sample(1:6799, 10000, replace=TRUE)
for(i in 1:10000) {
if(sample1[i]==sample2[i]) next
foo[k,1] <- sqrt(sum((tellus.clr.unw[sample1[i],] - tellus.clr.unw[sample2[i],])^2)) / sqrt(52)
foo[k,2] <- sqrt(sum((tellus.alr[sample1[i],] - tellus.alr[sample2[i],])^2)) / sqrt(51)
k <- k+1
}
sum(foo[,2]<foo[,1])
# [1] 0 (all distances based on ALRs below the corresponding ones based on CLRs)
### ---------------------------------------------------------
### Figure 6: Scatterplot of distances based on CLRs and ALRs
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_6.pdf", width=5, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), font.lab=2, las=1)
plot(foo[,1], foo[,2], xlab="Distance based on ALRs w.r.t. Al", ylab="Logratio distance based on all LRs",
xlim=c(0,2), ylim=c(0,2), asp=1, col="lightblue", cex=0.5)
abline(a=0, b=1, col="red", lty=2)
# dev.off()
### ---------------------------------------------------------
### total variance in logratio analysis (the CLRs, equivalently all LRs)
tellus.lra <- LRA(tellus.pro, weight=FALSE)
sum(tellus.lra$sv^2)
# [1] 0.3446107
### total variance in PCA of ALRs (ref: Al)
tellus.pca <- PCA(tellus.alr, weight=FALSE)
### (remember that all total variances are averaged, not summed)
sum(tellus.pca$sv^2)
# [1] 0.3786807
### percentages of variance for CLRs in LRA
round(100*tellus.lra$sv^2/sum(tellus.lra$sv^2),3)
# [1] 45.188 23.813 4.934 3.131 2.555 2.088 1.847 1.790 1.352 1.148 1.105 1.057 0.950 0.841
# [15] 0.812 0.675 0.634 0.560 0.477 0.428 0.404 0.374 0.358 0.335 0.277 0.249 0.237 0.224
# [29] 0.204 0.195 0.171 0.167 0.157 0.146 0.141 0.132 0.119 0.110 0.105 0.088 0.083 0.073
# [43] 0.054 0.052 0.040 0.031 0.024 0.022 0.015 0.013 0.013
### percentages of variance for ALRs (ref: Al)
round(100*tellus.pca$sv^2/sum(tellus.pca$sv^2),3)
# [1] 44.893 22.101 7.330 2.914 2.606 2.083 1.801 1.713 1.461 1.231 1.065 1.013 0.912 0.807
# [15] 0.778 0.708 0.601 0.539 0.519 0.435 0.375 0.362 0.334 0.316 0.263 0.250 0.231 0.212
# [29] 0.207 0.189 0.170 0.159 0.154 0.146 0.135 0.129 0.118 0.110 0.102 0.091 0.082 0.070
# [43] 0.065 0.049 0.048 0.031 0.025 0.022 0.018 0.013 0.012
### WARD clustering of parts (i.e., on transposed matrix) using 10% of the cases
tellus.10 <- tellus.pro[seq(1,nrow(tellus), 10),]
dim(tellus.10)
# [1] 680 52
tellus.clus <- WARD(CLR(CLOSE(t(tellus.10)), weight=FALSE), weight=FALSE)
### -----------------------------------------------------------------------
### Figure 2: Ward clustering of parts
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_2.pdf", width=10, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), mgp=c(2,0.7,0), font.lab=2)
plot(tellus.clus, labels=colnames(tellus), xlab="Elements", ylab="Height", main="")
# dev.off()
### -----------------------------------------------------------------------
### Amalgamation clustering of parts (matrix not transposed) using 10% of the cases
### (this stepwise algorithm takes some time --- needs optimizing)
tellus.aclus <- ACLUST(tellus.10, weight=FALSE)
### Alternative vertical scale
tellus.aclus.alt <- tellus.aclus
tellus.aclus.alt$height <- 100*tellus.aclus$height/tellus.aclus$height[51]
### -----------------------------------------------------------------------
### Figure 3: Amalgamation clustering of parts
### (pdf and dev.off functions commented out, can be used for saving PDFs)
# pdf(file="Fig_3.pdf", width=10, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), mgp=c(2,0.7,0), font.lab=2)
plot(tellus.aclus.alt, labels=colnames(tellus), xlab="Elements",
ylab="Percentage variance (%)", main="")
# dev.off()
### -----------------------------------------------------------------------
### LRA of tellus and row principal coordinates
### .rpc = row principal coordinates
tellus.lra <- LRA(tellus.pro, weight=FALSE)
tellus.lra.rpc <- tellus.lra$rowpcoord
### PCA of tellus ALRs w.r.t. Al and row principal coordinates
tellus.alr.al <- ALR(tellus.pro, denom=2, weight=FALSE)$LR
tellus.pca <- PCA(tellus.alr.al, weight=FALSE)
tellus.pca.rpc <- tellus.pca$rowpcoord
### Procrustes correlations between all-logratios and ALRs...
### ...in full space
protest(tellus.lra.rpc, tellus.pca.rpc, permutations=0)$t0
# [1] 0.9907692
### ... and in reduced 2-D space
protest(tellus.lra.rpc[,1:2], tellus.pca.rpc[,1:2], permutations=0)$t0
# [1] 0.9971027
### contribution coordinates (in LRA equal weights are 1/52)
tellus.lra.ccc <- tellus.lra$colcoord * sqrt(1/52)
### high contributors
tellus.lra.ctr <- (tellus.lra.ccc[,1]^2 > 1/ncol(tellus)) | (tellus.lra.ccc[,2]^2 > 1/ncol(tellus))
sum(tellus.lra.ctr)
[1] 25
### colours for Age Bracket groups
require(colorspace)
tellus.col <- rainbow_hcl(10, l=50, c=70)
### function add.alpha for colour transparency
add.alpha <- function(col, alpha=1){
if(missing(col))
stop("Please provide a vector of colours.")
apply(sapply(col, col2rgb)/255, 2,
function(x)
rgb(x[1], x[2], x[3], alpha=alpha))
}
tellus.col.alpha <- add.alpha(rainbow_hcl(10, l=50, c=70), 0.2)
col <- c("blue","red") # colours for possible use in graphics
tellus.pch <- c(5,3,1,2,4,5,3,1,2,4)
### -----------------------------------------------------------------------
### Figure 7: left and right figures of the LRA biplot, and Age Brackets
### save as png insert into PPT, and eventually save all as png
# invert 2nd axis for this figure (only do this once)
tellus.lra.rpc[,2] <- -tellus.lra.rpc[,2]
tellus.lra.ccc[,2] <- -tellus.lra.ccc[,2]
### use horizontal rectangular window
rescale <- 2 # for points
dim <- c(1,2)
perc.hor <- 45.2; perc.ver <- 23.8
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * rbind(tellus.lra.rpc, rescale*tellus.lra.ccc), type = "n", asp = 1,
xlab = paste("LRA dimension ", dim[1], " (", round(perc.hor, 1), "%)", sep = ""),
ylab = paste("LRA dimension ", dim[2], " (", round(perc.ver, 1), "%)", sep = ""),
xaxt = "n", yaxt = "n", main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
axis(1)
axis(2)
axis(3, at = axTicks(3), labels =
round(axTicks(3)/rescale, 2), col = "black", col.ticks = col[2], col.axis = col[2])
axis(4, at = axTicks(4), labels =
round(axTicks(4)/rescale, 2), col = "black", col.ticks = col[2], col.axis = col[2])
arrows(0, 0, 0.92 * rescale * tellus.lra.ccc[tellus.lra.ctr, 1],
0.92 * rescale * tellus.lra.ccc[tellus.lra.ctr, 2], length = 0.1, angle = 10, col = "pink")
points(tellus.lra.rpc, pch = tellus.pch[AB], col = tellus.col.alpha[AB], font = 1, cex = 0.5)
text(rescale * tellus.lra.ccc[tellus.lra.ctr,], labels = colnames(tellus.pro)[tellus.lra.ctr],
col = "red", cex = 0.9, font = 4)
legend("bottomleft", legend=ABnames, pch=tellus.pch,
col=tellus.col, text.col=tellus.col, pt.cex=0.6, cex=0.8)
# dev.off()
require(ellipse)
# png(file="Fig_7_right.png",width=7,height=5.5,units="in",res=144)
rescale <- 3 # for ellipses
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * 0.44*tellus.lra.rpc, type = "n", asp = 1,
xlab = paste("LRA dimension ", dim[1], " (", round(perc.hor, 1), "%)", sep = ""),
ylab = paste("LRA dimension ", dim[2], " (", round(perc.ver, 1), "%)", sep = ""),
main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
set.seed(123)
CIplot_biv(tellus.lra.rpc[,1], tellus.lra.rpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=TRUE, alpha=0.99,
shownames=FALSE)
set.seed(123)
CIplot_biv(tellus.lra.rpc[,1], tellus.lra.rpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=FALSE, groupnames=ABnames, alpha=0.99)
# dev.off()
### same for dimension reduction of ALRs (both axes reversed here,
### weights here = 1/51 for 51 ALRs
tellus.pca.rpc <- -tellus.pca$rowpcoord
tellus.pca.ccc <- -tellus.pca$colcoord * sqrt(1/51)
tellus.pca.ctr <- (tellus.pca.ccc[,1]^2 > 1/ncol(tellus)) | (tellus.pca.ccc[,2]^2 > 1/ncol(tellus))
sum(tellus.pca.ctr)
[1] 28
### -----------------------------------------------------------------------
### Figure 8: left and right figures of the ALR biplot, and Age Brackets
# save as png insert into PPT, and eventually save all as png
# png(file="Fig_8_left.png",width=7,height=5.5,units="in",res=144)
rescale <- 2 # for points
dim <- c(1,2)
perc.hor <- 44.9; perc.ver <- 22.1
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * rbind(tellus.pca.rpc, rescale*tellus.pca.ccc), type = "n", asp = 1,
xlab = paste("PCA dimension ", dim[1], " (", round(perc.hor, 1), "%)", sep = ""),
ylab = paste("PCA dimension ", dim[2], " (", round(perc.ver, 1), "%)", sep = ""),
xaxt = "n", yaxt = "n", main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
axis(1)
axis(2)
axis(3, at = axTicks(3), labels = round(axTicks(3)/rescale, 2),
col = "black", col.ticks = col[2], col.axis = col[2])
axis(4, at = axTicks(4), labels = round(axTicks(4)/rescale, 2),
col = "black", col.ticks = col[2], col.axis = col[2])
arrows(0, 0, 0.92 * rescale * tellus.pca.ccc[tellus.pca.ctr, 1],
0.92 * rescale * tellus.pca.ccc[tellus.pca.ctr, 2],
length = 0.1, angle = 10, col = "pink")
points(tellus.pca.rpc, pch = tellus.pch[AB], col = tellus.col.alpha[AB], font = 1, cex = 0.5)
text(rescale * tellus.pca.ccc[tellus.pca.ctr,], labels = colnames(tellus.alr)[tellus.pca.ctr],
col = "red", cex = 0.9, font = 4)
legend("bottomleft", legend=ABnames, pch=tellus.pch,
col=tellus.col, text.col=tellus.col, pt.cex=0.6, cex=0.8)
# dev.off()
# png(file="Fig_8_right.png",width=7,height=5.5,units="in",res=144)
rescale <- 3 # for ellipses
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * 0.44*tellus.lra.rpc, type = "n", asp = 1,
xlab = paste("PCA dimension ", dim[1], " (", round(perc.hor, 1), "%)", sep = ""),
ylab = paste("PCA dimension ", dim[2], " (", round(perc.ver, 1), "%)", sep = ""),
main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
require(ellipse)
set.seed(123)
CIplot_biv(tellus.pca.rpc[,1], tellus.pca.rpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=TRUE, alpha=0.99,
shownames=FALSE)
set.seed(123)
CIplot_biv(tellus.pca.rpc[,1], tellus.pca.rpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=FALSE, groupnames=ABnames, alpha=0.99)
# dev.off()
### study of the Box-Cox transformation in CA on the geometry of the parts
### should work with the columns: a 't' before 'tellus' indicates transposed
ttellus <- t(tellus.pro)
ttellus.pro <- CLOSE(ttellus)
# ttellus.clr <- CLR(ttellus.pro, weight=FALSE)
ttellus.lra <- LRA(ttellus.pro, weight=FALSE)
ttellus.lra.rpc <- ttellus.lra$rowpcoord
### for original CA/chi-square
ttellus.ca <- CA(ttellus.pro)
ttellus.ca.rpc <- ttellus.ca$rowpcoord
protest(ttellus.lra.rpc, ttellus.ca.rpc, permutations=0)$t0
# [1] 0.8663466
### Now CA/chi-square with power transformation on data with zeros replaced
### Sequence of powers down to the smallest 0.0001
BoxCox <- rep(0, 101)
k <- 1
for(alpha in c(seq(1,0.01,-0.01),0.0001)) {
foo <- ttellus.pro^alpha
foo.ca <- CA(foo)
foo.ca.rpc <- foo.ca$rowpcoord
BoxCox[k] <- protest(ttellus.lra.rpc, foo.ca.rpc, permutations=0)$t0
k <- k+1
}
### Repeat with original data zeros not replaced
ttellus0 <- t(tellus0)
ttellus0.pro <- CLOSE(ttellus0)
BoxCox0 <- rep(0, 101)
k <- 1
for(alpha in c(seq(1,0.01,-0.01),0.0001)) {
foo <- ttellus0.pro^alpha
foo.ca <- CA(foo)
foo.ca.rpc <- foo.ca$rowpcoord
BoxCox0[k] <- protest(ttellus.lra.rpc, foo.ca.rpc, permutations=0)$t0
k <- k+1
}
### What is maximum Procrustes correlation
max(BoxCox0)
# [1] 0.9431539
### For which power?
c(seq(1,0.01,-0.01),0.0001)[which(BoxCox0 == max(BoxCox0))]
# [1] 0.5
### -----------------------------------------------------------------------
### Figure 9: plots of Procrustes correlations for Box-Cox transformation
### CA for data with zeros replaced and data with original zeros
# pdf(file="Fig_9.pdf", width=5, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(4.2,4,1,1), font.lab=2, las=1)
plot(c(seq(1,0.01,-0.01),0.0001), BoxCox, xlab="Power of Box-Cox transformation",
ylab="Procrustes correlation", type="l", lwd=2, col="blue", ylim=c(0.35,1),
bty="n", xaxt="n", yaxt="n")
axis(1, at=seq(0,1,0.1), labels=seq(0,1,0.1))
axis(2)
lines(c(seq(1,0.01,-0.01),0.0001), BoxCox0, lwd=2, col="red", lty=3)
segments(0.5,0,0.5,BoxCox0[51], col="pink", lwd=2, lty=2)
legend("bottomright", legend=c("zeros replaced","with zeros"),
bty="n",
col=c("blue","red"),
lwd=c(2,2), lty=c(1,3), cex=0.8)
# dev.off()
### -----------------------------------------------------------------------
### Dimension reduction with CA of square-root transformed compositions
### (doing it on columns as for Box-Cox, although makes no difference)
ttellus0.ca <- CA(CLOSE(ttellus0.pro^0.5))
ttellus0.ca$sv <- ttellus0.ca$sv/0.5
round(100*ttellus0.ca$sv^2/sum(ttellus0.ca$sv^2),3)
# [1] 43.384 22.532 5.194 4.729 3.068 2.649 2.119 1.832 1.591 1.436 1.152 1.116 0.987 0.813
# [15] 0.729
### note again: rows are columns, and columns are rows,
### and axes are reversed to agree with previous biplots
ttellus0.ca.cpc <- -ttellus0.ca$colpcoord
ttellus0.ca.rcc <- -ttellus0.ca$rowcoord * sqrt(ttellus0.ca$rowmass)
ttellus0.ca.ctr <- (ttellus0.ca.rcc[,1]^2 > 1/nrow(ttellus0)) | (ttellus0.ca.rcc[,2]^2 > 1/nrow(ttellus0))
sum(ttellus0.ca.ctr)
[1] 22
### -----------------------------------------------------------------------
### Figure 10: left and right figures of the CA biplot, and Age Brackets
# save as png insert into PPT, and eventually save all as png
# png(file="Fig_10_left.png",width=7,height=5.5,units="in",res=144)
rescale <- 1.5 # for points
dim <- c(1,2)
perc.hor <- 43.4; perc.ver <- 22.5
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * rbind(ttellus0.ca.cpc, rescale*ttellus0.ca.rcc), type = "n", asp = 1,
xlab = paste("CA dimension ", dim[1], " (", round(perc.hor, 1), "%)", sep = ""),
ylab = paste("CA dimension ", dim[2], " (", round(perc.ver, 1), "%)", sep = ""),
xaxt = "n", yaxt = "n", main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
axis(1)
axis(2)
axis(3, at = axTicks(3), labels = round(axTicks(3)/rescale, 2),
col = "black", col.ticks = col[2], col.axis = col[2])
axis(4, at = axTicks(4), labels = round(axTicks(4)/rescale, 2),
col = "black", col.ticks = col[2], col.axis = col[2])
arrows(0, 0, 0.95 * rescale * ttellus0.ca.rcc[ttellus0.ca.ctr, 1],
0.95 * rescale * ttellus0.ca.rcc[ttellus0.ca.ctr, 2],
length = 0.1, angle = 10, col = "pink")
points(ttellus0.ca.cpc, pch = tellus.pch[AB], col = tellus.col.alpha[AB], font = 1, cex = 0.5)
text(rescale * ttellus0.ca.rcc[ttellus0.ca.ctr,], labels = rownames(ttellus0)[ttellus0.ca.ctr], col = "red",
cex = 0.9, font = 4)
legend("bottomleft", legend=ABnames,
pch=tellus.pch, col=tellus.col, text.col=tellus.col, pt.cex=0.6, cex=0.8)
# dev.off()
# png(file="Fig_10_right.png",width=7,height=5.5,units="in",res=144)
rescale <- 3 # for ellipses
par(mar=c(4.2,4,2,2.5), mgp=c(2,0.7,0), font.lab=2, cex.axis=0.8)
plot(1.05 * 0.5*ttellus0.ca.cpc, type = "n",
asp = 1, xlab = paste("CA dimension ", dim[1], " (",
round(perc.hor, 1), "%)", sep = ""), ylab = paste("CA dimension ", dim[2], " (",
round(perc.ver, 1), "%)", sep = ""), main = "")
abline(h = 0, v = 0, col = "gray", lty = 2)
require(ellipse)
set.seed(123)
CIplot_biv(ttellus0.ca.cpc[,1], ttellus0.ca.cpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=TRUE, alpha=0.99,
shownames=FALSE)
set.seed(123)
CIplot_biv(ttellus0.ca.cpc[,1], ttellus0.ca.cpc[,2], group=AB, groupcols=tellus.col,
add=TRUE, shade=FALSE, groupnames=ABnames, alpha=0.99)
# dev.off()
### Procrustes between case coordinates in LRA and corresponding ones in CA
protest(tellus.lra.rpc, ttellus0.ca.cpc, permutations=0)$t0
# [1] 0.9569627
### ---------------------------------------------------------------------------------------
### k-means clustering of LRA and ALR and CA coodinates and comparison (3-cluster solution)
### for LRA
set.seed(123)
lra.km3 <- kmeans(tellus.lra.rpc, centers=3, nstart=50, iter.max=200)
# cluster sizes
lra.km3$size
## [1] 798 4513 1488
### for PCA of ALRs (ref:Al)
set.seed(123)
pca.km3 <- kmeans(tellus.pca.rpc, centers=3, nstart=50, iter.max=200)
# cluster sizes
pca.km3$size
## [1] 842 4478 1479
# for CA of power transformed (square root)
set.seed(123)
ca.km3 <- kmeans(ttellus0.ca.cpc, centers=3, nstart=50, iter.max=200)
# cluster sizes
ca.km3$size
## 914 4396 1489
### tables of agreements
table(lra.km3$cluster, pca.km3$cluster)[c(2,3,1),c(2,3,1)]
# 2 3 1
# 2 4467 9 37
# 3 7 1470 11
# 1 4 0 794
(4467+1470+794) / 6799
# 0.9899985
table(lra.km3$cluster, ca.km3$cluster)[c(2,3,1),c(2,3,1)]
# 3 1 2
# 2 4369 45 99
# 3 17 1444 27
# 1 10 0 788
(4369+1444+788) / 6799
# 0.9708781
### adjusted Rand index
require(pdfCluster)
adj.rand.index(lra.km3$cluster, pca.km3$cluster)
# [1] 0.9708841
adj.rand.index(lra.km3$cluster, ca.km3$cluster)
# [1] 0.9142874
### Quasi-coherence
### Subcompositional incoherence exercise for regular CA using chi-square distance
### with and without square-root transformation
chidist <- function(mat,rowcol=1) {
# function to calculate chi-square distances between row or column
# profiles of a matrix
# e.g. chidist(N,1) calculates the chi-square distances between row profiles
# (for row profiles, chidist(N) is sufficient)
# chidist(N,2) calculates the chi-square distances between column profiles
mat <- as.matrix(mat)
if(rowcol==1) {
prof<-mat/apply(mat,1,sum)
rootaveprof<-sqrt(apply(mat,2,sum)/sum(mat))
}
if(rowcol==2) {
prof<-t(mat)/apply(mat,2,sum)
rootaveprof<-sqrt(apply(mat,1,sum)/sum(mat))
}
dist(scale(prof,center=FALSE,scale=rootaveprof))
}
procr.CA <- matrix(0, nrow=100, ncol=44)
procr.CA.05 <- matrix(0, nrow=100, ncol=44)
tellus.cm <- colMeans(tellus0.pro)
D.chi <- as.matrix(chidist(tellus0.pro, 2))
D.chi.05 <- as.matrix(chidist(tellus0.pro^0.5, 2))
set.seed(1234567)
for(j in seq(44,4,-2)) {
nparts <- j
for(i in 1:100) {
# find the subcompositional parts
jparts <- sample(1:52, nparts)
foo <- tellus0.pro[,jparts]
# remove parts all zeros
allzero <- which(colSums(foo)==0)
if(length(allzero)>0) {
jparts <- jparts[-allzero]
foo <- tellus.pro[,jparts]
}
# incoherence in CA via MDS of distances
D <- as.dist(D.chi[jparts, jparts])
D.05 <- as.dist(D.chi.05[jparts, jparts])
D.rpc <- cmdscale(D, eig=TRUE, k=length(jparts)-1)$points
D.rpc.05 <- cmdscale(D.05, eig=TRUE, k=length(jparts)-1)$points
# remove samples that may have all zeros
allzero <- which(rowSums(foo)==0)
if(length(allzero)>0) {
foo <- foo[-allzero,]
}
D2 <- chidist(foo, 2)
D2.05 <- chidist(foo^0.5, 2)
D2.rpc <- cmdscale(D2, eig=TRUE, k=length(jparts)-1)$points
D2.rpc.05 <- cmdscale(D2.05, eig=TRUE, k=length(jparts)-1)$points
procr.CA[i,j] <- protest(D2.rpc, D.rpc, permutations=0)$t0
procr.CA.05[i,j] <- protest(D2.rpc.05, D.rpc.05, permutations=0)$t0
}
}
procr.CA.quants <- apply(procr.CA, 2, quantile, c(0.025,0.975), na.rm=TRUE)
round(procr.CA.quants[,seq(4,44,2)],4)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
# 2.5% 0.8466 0.775 0.8001 0.833 0.829 0.9121 0.8948 0.894 0.9392 0.9611 0.9531 0.9583 0.9755
# 97.5% 0.9999 1.000 1.0000 1.000 1.000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000
# [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21]
# 2.5% 0.983 0.9852 0.9796 0.9907 0.9904 0.9898 0.9898 0.9914
# 97.5% 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
procr.CA.quants.05 <- apply(procr.CA.05, 2, quantile, c(0.025,0.975), na.rm=TRUE)
round(procr.CA.quants.05[,seq(4,44,2)],4)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
# 2.5% 0.9908 0.9883 0.9914 0.9921 0.9916 0.9959 0.997 0.9973 0.9967 0.9984 0.9984 0.999 0.9987
# 97.5% 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000
# [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21]
# 2.5% 0.9995 0.9993 0.9995 0.9997 0.9997 0.9998 0.9997 0.9998
# 97.5% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
procr.CA.ones <- rep(0,44)
for(j in seq(4,44,2)) procr.CA.ones[j] <- sum(procr.CA[,j]>0.999)
procr.CA.ones[seq(4,44,2)]
# [1] 31 21 33 38 42 49 50 48 48 60 55 63 67 69 68 75 81 77 81 77 89
procr.CA.ones.05 <- rep(0,44)
for(j in seq(4,44,2)) procr.CA.ones.05[j] <- sum(procr.CA.05[,j]>0.999)
procr.CA.ones.05[seq(4,44,2)]
# [1] 64 54 64 61 70 75 77 80 84 88 93 97 96 99 99 100 100 100 100 100 100
### Figure 11: Levels of coherence for regular chi-square geometry
# pdf(file="Fig_11.pdf", width=5, height=5, useDingbats=FALSE, family="ArialMT")
par(mar=c(5,5,1,1), mgp=c(3.5,0.7,0), font.lab=2, las=1, mfrow=c(1,1))
plot(rep(seq(4,44,2), each=2), as.numeric(procr.CA.quants[,seq(4,44,2)]), xlab="Number of parts in subcomposition",
ylab="Procrustes correlation", bty="n", xaxt="n", ylim=c(0.75, 1.02), type="n", font.lab=2, xlim=c(4,45))
axis(1, at=seq(4,44,2), labels=seq(4,44,2))
for(j in seq(4,44,2)) segments(j, procr.CA.quants[1,j], j, procr.CA.quants[2,j], col="blue", lwd=2)
eps <- 0.2
for(j in seq(4,44,2)) segments(j-eps, procr.CA.quants[1,j], j+eps, procr.CA.quants[1,j], col="blue", lwd=2, lend=2)
for(j in seq(4,44,2)) segments(j-eps, procr.CA.quants[2,j], j+eps, procr.CA.quants[2,j], col="blue", lwd=2, lend=2)
points(seq(4,44,2), apply(procr.CA[,seq(4,44,2)], 2, median, na.rm=TRUE), pch=21, col="blue", bg="white", cex=0.9)
text(seq(4,44,2), rep(1.01, 21), labels=procr.CA.ones[seq(4,44,2)], font=2, cex=0.6)
# dev.off()
### Figure 12: as before for sqrt profiles (plot window narrower vertically)
# pdf(file="Tellus_coherence_CAsqrt.pdf", width=5, height=2.7, useDingbats=FALSE, family="ArialMT")
par(mar=c(5,5,1,1), mgp=c(3.5,0.7,0), font.lab=2, las=1, mfrow=c(1,1))
plot(rep(seq(4,44,2), each=2), as.numeric(procr.CA.quants.05[,seq(4,44,2)]), xlab="Number of parts in subcomposition",
ylab="Procrustes correlation", bty="n", xaxt="n", ylim=c(0.90, 1.01), type="n", font.lab=2, xlim=c(4,45), yaxt="n")
axis(1, at=seq(4,44,2), labels=seq(4,44,2))
axis(2, at=c(0.90, 0.95, 1.00), labels=c("0.90", "0.95", "1.00"))
for(j in seq(4,44,2)) segments(j, procr.CA.quants.05[1,j], j, procr.CA.quants.05[2,j], col="blue", lwd=2)
eps <- 0.2
for(j in seq(4,44,2)) segments(j-eps, procr.CA.quants.05[1,j], j+eps, procr.CA.quants.05[1,j], col="blue", lwd=2, lend=2)
for(j in seq(4,44,2)) segments(j-eps, procr.CA.quants.05[2,j], j+eps, procr.CA.quants.05[2,j], col="blue", lwd=2, lend=2)
points(seq(4,44,2), apply(procr.CA.05[,seq(4,44,2)], 2, median, na.rm=TRUE), pch=21, col="blue", bg="white", cex=0.9)
text(seq(4,44,2), rep(1.01, 21), labels=procr.CA.ones.05[seq(4,44,2)], font=2, cex=0.6)
# dev.off()
### for the subcomposition of rare earth minerals
jparts <- rare
D <- as.dist(D.chi[jparts, jparts])
D.rpc <- cmdscale(D, eig=TRUE, k=8)$points
foo <- tellus.pro[,jparts]
# remove parts all zeros
allzero <- which(colSums(foo)==0)
if(length(allzero)>0) {
jparts <- jparts[-allzero]
foo <- tellus.pro[,jparts]
}
# remove samples all zeros
allzero <- which(rowSums(foo)==0)
if(length(allzero)>0) {
foo <- foo[-allzero,]
}
D2 <- chidist(foo, 2)
D2.rpc <- cmdscale(D2, eig=TRUE, k=8)$points
protest(D2.rpc, D.rpc, permutations=0)$t0
# [1] 0.9723521
### same, but with square root transformation
jparts <- rare
D.chi.sqrt <- as.matrix(chidist(sqrt(tellus.pro), 2))
D.sqrt <- as.dist(D.chi.sqrt[jparts, jparts])
D.sqrt.rpc <- cmdscale(D.sqrt, eig=TRUE, k=8)$points
foo <- tellus.pro[,jparts]
# remove parts all zeros
allzero <- which(colSums(foo)==0)
if(length(allzero)>0) {
jparts <- jparts[-allzero]
foo <- tellus.pro[,jparts]
}
# remove samples all zeros
allzero <- which(rowSums(foo)==0)
if(length(allzero)>0) {
foo <- foo[-allzero,]
}
D2.sqrt <- chidist(sqrt(foo), 2)
D2.sqrt.rpc <- cmdscale(D2.sqrt, eig=TRUE, k=8)$points
protest(D2.sqrt.rpc, D.sqrt.rpc, permutations=0)$t0
# [1] 0.9984683