-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransformer_helpers.py
51 lines (43 loc) · 1.24 KB
/
transformer_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch.nn
from layers.transformer import Transformer
from interfaces import TransformerLMInterface
from models.transformer_lm import TransformerLM
from models.pushdown_transformer_lm import PushdownLM
def create_lm(
t_args,
in_vocab_size,
vec_dim,
n_heads,
encoder_n_layers,
ff_multiplier=1,
use_stack_tape=False,
recursive_layer_args=None,
) -> torch.nn.Module:
args = dict(embedding_init="xavier", scale_mode="opennmt")
# we use relative position embeddings
args["pos_embedding"] = lambda x, offset: x
args["dropout"] = t_args.get("dropout", 0.1)
args["embedding_dropout"] = t_args.get("embedding_dropout", -1.0)
args["output_dropout"] = t_args.get("output_dropout", -1.0)
return PushdownLM(
in_vocab_size,
vec_dim,
n_heads,
num_encoder_layers=encoder_n_layers,
use_stack_tape=use_stack_tape,
recursive_layer_args=recursive_layer_args,
tied_embedding=True,
**args,
)
def create_model_interface(
model,
in_vocab=None,
label_smoothing=0.0,
is_null_encoder=False,
is_lm=False,
):
return TransformerLMInterface(
model,
in_vocab=in_vocab,
label_smoothing=label_smoothing,
)