-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpyEnsSumMPAS.py
617 lines (529 loc) · 20.7 KB
/
pyEnsSumMPAS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#!/usr/bin/env python
import configparser
import getopt
import json
import os
import re
import sys
import time
import netCDF4 as nc
import numpy as np
import pyEnsLib
import pyTools
from pyTools import Duplicate, EqualLength, EqualStride
# This routine creates a summary file from an ensemble of MPAS
# output files
def main(argv):
# Get command line stuff and store in a dictionary
s = 'tag= compset= esize= tslice= core= model= mesh= sumfile= indir= sumfiledir= mach= verbose jsonfile= mpi_enable mpi_disable'
optkeys = s.split()
try:
opts, args = getopt.getopt(argv, 'h', optkeys)
except getopt.GetoptError:
pyEnsLib.EnsSumMPAS_usage()
sys.exit(2)
# Put command line options in a dictionary - also set defaults
opts_dict = {}
# Defaults
opts_dict['model'] = 'mpas'
opts_dict['core'] = 'atmosphere'
opts_dict['mesh'] = 'mesh'
opts_dict['tag'] = 'tag'
opts_dict['mach'] = 'derecho'
opts_dict['esize'] = 200
opts_dict['tslice'] = 0
opts_dict['sumfile'] = 'mpas.ens.summary.nc'
opts_dict['indir'] = './'
opts_dict['sumfiledir'] = './'
opts_dict['jsonfile'] = 'empty_excluded.json'
opts_dict['verbose'] = False
opts_dict['mpi_enable'] = True
opts_dict['mpi_disable'] = False
# This creates the dictionary of input arguments
opts_dict = pyEnsLib.getopt_parseconfig(opts, optkeys, 'ES_MPAS', opts_dict)
verbose = opts_dict['verbose']
st = opts_dict['esize']
esize = int(st)
if not (
opts_dict['tag']
and opts_dict['core']
and opts_dict['mach']
or opts_dict['mesh']
or opts_dict['model']
):
print(
'ERROR: Please specify --tag, --core, --mach, --mesh and --model options => EXITING....'
)
sys.exit()
if opts_dict['mpi_disable']:
opts_dict['mpi_enable'] = False
# Now find file names in indir
input_dir = opts_dict['indir']
# The var list that will be excluded
ex_varlist = []
# Create a mpi simplecomm object
if opts_dict['mpi_enable']:
me = pyTools.create_comm()
else:
me = pyTools.create_comm(not opts_dict['mpi_enable'])
if me.get_rank() == 0:
print('STATUS: Running pyEnsSumMPAS.py')
if me.get_rank() == 0 and verbose:
print(opts_dict)
print('STATUS: Ensemble size for summary = ', esize)
exclude = False
if me.get_rank() == 0:
if opts_dict['jsonfile']:
# Read in the excluded var list
ex_varlist, exclude = pyEnsLib.read_jsonlist(opts_dict['jsonfile'], 'ES')
if len(ex_varlist) > 0:
if ex_varlist[0] == 'JSONERROR':
me.abort()
# Broadcast the excluded var list to each processor
if opts_dict['mpi_enable']:
ex_varlist = me.partition(ex_varlist, func=Duplicate(), involved=True)
in_files = []
if os.path.exists(input_dir):
# Get the list of files
in_files_temp = os.listdir(input_dir)
in_files = sorted(in_files_temp)
# Make sure we have enough
num_files = len(in_files)
if me.get_rank() == 0 and verbose:
print('VERBOSE: Number of files in input directory = ', num_files)
if num_files < esize:
if me.get_rank() == 0 and verbose:
print(
'VERBOSE: Number of files in input directory (',
num_files,
') is less than specified ensemble size of ',
esize,
)
sys.exit(2)
if num_files > esize:
if me.get_rank() == 0 and verbose:
print(
'VERBOSE: Note that the number of files in ',
input_dir,
'is greater than specified ensemble size of ',
esize,
'\nwill just use the first ',
esize,
'files',
)
else:
if me.get_rank() == 0:
print('ERROR: Input directory: ', input_dir, ' not found')
sys.exit(2)
# Check full file names in input directory (don't open yet)
full_in_files = []
if me.get_rank() == 0 and opts_dict['verbose']:
print('VERBOSE: Input files are: ')
for onefile in in_files[0:esize]:
fname = input_dir + '/' + onefile
if me.get_rank() == 0 and opts_dict['verbose']:
print(fname)
if os.path.isfile(fname):
full_in_files.append(fname)
else:
if me.get_rank() == 0:
print('ERROR: Could not locate file ', fname, ' => EXITING....')
sys.exit()
# open just the first file
first_file = nc.Dataset(full_in_files[0], 'r')
# Store dimensions of the input fields
if me.get_rank() == 0 and verbose:
print('VERBOSE: Getting spatial dimensions')
nlev = -1
nlevp1 = -1
nsoil = -1
ncell = -1
nedge = -1
nvertex = -1
# Look at first file and get dims
input_dims = first_file.dimensions
for key in input_dims:
if key == 'nVertLevels':
nlev = len(input_dims[key])
elif key == 'nVertLevelsP1':
nlevp1 = len(input_dims[key])
elif key == 'nSoilLevels':
nsoil = len(input_dims[key])
elif key == 'nCells':
ncell = len(input_dims[key])
elif key == 'nEdges':
nedge = len(input_dims[key])
elif key == 'nVertices':
nvertex = len(input_dims[key])
if nlev == -1 or nlevp1 == -1 or nsoil == -1:
if me.get_rank() == 0:
print('ERROR: Need nVertLevels and nVertLevelsP1 and NSoilLevels => EXITING....')
sys.exit()
if (ncell == -1) or (nedge == -1) or (nvertex == -1):
if me.get_rank() == 0:
print('ERROR: Need nCells and nVertices and nEdges => EXITING....')
sys.exit()
# output dimensions
if me.get_rank() == 0 and verbose:
print('nVertLevels = ', nlev)
print('nVertLevelsP1 = ', nlevp1)
print('nSoilLevels = ', nsoil)
print('nCells = ', ncell)
print('nEdges = ', nedge)
print('nVertices = ', nvertex)
# Get all vars (For now include all variables)
vars_dict_all = first_file.variables
# Remove the excluded variables (specified in json file) from variable dictionary
vars_dict = vars_dict_all.copy()
for i in ex_varlist:
if i in vars_dict:
del vars_dict[i]
# We have cell vars and edge vars and vertex vars (and only want time-dependent vars)
str_size = 0 # longest var name
cell_names = []
edge_names = []
vertex_names = []
t_dim = 'Time'
c_dim = 'nCells'
e_dim = 'nEdges'
v_dim = 'nVertices'
# CHECK FOR edge variable u (horizontal wind velocity vector)
extra_exclude = 0
# sort to cell, edge, and vertex (and grab max str_size)
for k, v in vars_dict.items():
# var = k
# get var type
dd = vars_dict[k][:].dtype
vd = v.dimensions # all the variable's dimensions (names)
# only car about time dependent vars
if t_dim in vd:
# no integers
if dd == 'int32':
ex_varlist.append(k)
extra_exclude = extra_exclude + 1
if me.get_rank() == 0:
print(
'WARNING: Variable ',
k,
' is an integer and should be excluded. Added to json file.',
)
continue
if c_dim in vd:
cell_names.append(k)
elif e_dim in vd:
if k == 'u':
# check for uReconstructZonal and uReconstructMeridional
if 'uReconstructZonal' in vars_dict and 'uReconstructMeridional' in vars_dict:
ex_varlist.append(k)
extra_exclude = extra_exclude + 1
if me.get_rank() == 0:
print(
'WARNING: We suggest that variable u (Horizontal normal velocity at edges) be excluded from the summary file in favor of uReconstructZonal and uReconstructMeridional (cell variables) Added to json file.'
)
continue
edge_names.append(k)
elif v_dim in vd:
vertex_names.append(k)
else:
# add to exclude list
ex_varlist.append(k)
extra_exclude = extra_exclude + 1
if me.get_rank() == 0:
print(
'WARNING: variable ',
k,
' contains time but not cells, edges, or vertices (and will be excluded and added to a new jsonfile).',
)
continue
str_size = max(str_size, len(k))
num_cell = len(cell_names)
num_edge = len(edge_names)
num_vertex = len(vertex_names)
total = num_cell + num_edge + num_vertex
if me.get_rank() == 0 and verbose:
print('VERBOSE: Number of variables (after exclusions) found: ', total)
print(
'VERBOSE: Cell variables: ',
num_cell,
', Edge variables: ',
num_edge,
' Vertex variables: ',
num_vertex,
)
# Now sort these and combine (this sorts caps first, then lower case -
# which is what we want)
cell_names.sort()
edge_names.sort()
vertex_names.sort()
if esize < total:
if me.get_rank() == 0:
print(
'**************************************************************************************************'
)
print(
' ERROR: the total number of variables '
+ str(total)
+ ' is larger than the number of ensemble files '
+ str(esize)
)
print(
' Cannot generate ensemble summary file, please remove more variables from your included variable list,'
)
print(' or add more variables in your excluded variable list => EXITING....')
print(
'**************************************************************************************************'
)
sys.exit()
# All vars is cell vars, the edge vars, the vertex
all_var_names = list(cell_names)
all_var_names += edge_names
all_var_names += vertex_names
# Rank 0 - Create new summary ensemble file
this_sumfile = opts_dict['sumfile']
# check if directory is valid
sum_dir = os.path.dirname(this_sumfile)
if len(sum_dir) == 0:
sum_dir = '.'
if os.path.exists(sum_dir) is False:
if me.get_rank() == 0:
print('ERROR: Summary file directory: ', sum_dir, ' not found')
sys.exit(2)
if sum_dir == '.':
this_sumfile = sum_dir + '/' + this_sumfile
else:
this_sumfile = this_sumfile
varCell_list_loc = me.partition(cell_names, func=EqualStride(), involved=True)
varEdge_list_loc = me.partition(edge_names, func=EqualStride(), involved=True)
varVertex_list_loc = me.partition(vertex_names, func=EqualStride(), involved=True)
# close first_file
first_file.close()
# Calculate global means #
if me.get_rank() == 0 and verbose:
print('VERBOSE: Calculating global means .....')
gmCell, gmEdge, gmVertex = pyEnsLib.generate_global_mean_for_summary_MPAS(
full_in_files, varCell_list_loc, varEdge_list_loc, varVertex_list_loc, opts_dict
)
if me.get_rank() == 0 and verbose:
print('VERBOSE: Finished calculating global means .....')
# gather to rank = 0
if opts_dict['mpi_enable']:
# Gather the cell variable results from all processors to the master processor
slice_index = get_stride_list(len(cell_names), me)
# Gather global means cell results
# print("MYRANK = ", me.get_rank(), slice_index)
gmCell = gather_npArray(gmCell, me, slice_index, (len(cell_names), len(full_in_files)))
# print(gmCell)
# Gather the edge variable results from all processors to the master processor
slice_index = get_stride_list(len(edge_names), me)
# Gather global means edge results
gmEdge = gather_npArray(gmEdge, me, slice_index, (len(edge_names), len(full_in_files)))
# Gather the vertex variable results from all processors to the master processor
slice_index = get_stride_list(len(vertex_names), me)
# Gather global means vertex results
gmVertex = gather_npArray(
gmVertex, me, slice_index, (len(vertex_names), len(full_in_files))
)
# rank =0 : complete calculations for summary file
if me.get_rank() == 0:
gmall = np.concatenate((gmCell, gmEdge, gmVertex), axis=0)
# PCA prep and calculation
(
mu_gm,
sigma_gm,
standardized_global_mean,
loadings_gm,
scores_gm,
new_ex_varlist,
new_gmall,
b_exit,
) = pyEnsLib.pre_PCA(gmall, all_var_names, ex_varlist, me)
# if PCA calc encounters an error, then remove the summary file and exit
if b_exit:
print('STATUS: Summary could not be created.')
sys.exit(2)
# update json file?
if len(ex_varlist) < len(new_ex_varlist) or extra_exclude > 0:
print('STATUS: Creating an updated JSON file (with prefix "NEW.")')
new_name = 'NEW.' + opts_dict['jsonfile']
print(
'STATUS: Adding ',
len(new_ex_varlist) - len(ex_varlist) + extra_exclude,
' variables to ',
new_name,
)
jdict = {}
jdict['ExcludedVar'] = new_ex_varlist
with open(new_name, 'w') as outfile:
json.dump(jdict, outfile)
# update ncell, nedge, and nvertex => by removing vars from corresponding names
for i in new_ex_varlist:
if i in all_var_names:
all_var_names.remove(i)
if i in cell_names:
cell_names.remove(i)
elif i in edge_names:
edge_names.remove(i)
elif i in vertex_names:
vertex_names.remove(i)
num_cell = len(cell_names)
num_edge = len(edge_names)
num_vertex = len(vertex_names)
total = num_cell + num_edge + num_vertex
nvars = loadings_gm.shape[0]
if nvars != (total):
print('DIMENSION ERROR!')
print('STATUS: Summary could not be created.')
sys.exit(2)
# create the summary file (still rank 0)
if verbose:
print('VERBOSE: Creating ', this_sumfile, ' ...')
if os.path.isfile(this_sumfile):
os.unlink(this_sumfile)
nc_sumfile = nc.Dataset(this_sumfile, 'w', format='NETCDF4_CLASSIC')
# Set dimensions
if verbose:
print('VERBOSE: Setting dimensions .....')
nc_sumfile.createDimension('nCells', ncell)
nc_sumfile.createDimension('nEdges', nedge)
nc_sumfile.createDimension('nVertices', nvertex)
nc_sumfile.createDimension('nVertLevels', nlev)
nc_sumfile.createDimension('nVertLevelsP1', nlevp1)
nc_sumfile.createDimension('nSoilLevels', nsoil)
nc_sumfile.createDimension('ens_size', esize)
nc_sumfile.createDimension('nvars', total)
nc_sumfile.createDimension('nvarsCell', num_cell)
nc_sumfile.createDimension('nvarsEdge', num_edge)
nc_sumfile.createDimension('nvarsVertex', num_vertex)
nc_sumfile.createDimension('str_size', str_size)
# Set global attributes
now = time.strftime('%c')
if verbose:
print('VERBOSE: Setting global attributes .....')
nc_sumfile.creation_date = now
nc_sumfile.title = 'MPAS verification ensemble summary file'
nc_sumfile.tag = opts_dict['tag']
nc_sumfile.model = opts_dict['model']
nc_sumfile.core = opts_dict['core']
nc_sumfile.mesh = opts_dict['mesh']
nc_sumfile.machine = opts_dict['mach']
# Create variables
if verbose:
print('VERBOSE: Creating variables .....')
v_vars = nc_sumfile.createVariable('vars', 'S1', ('nvars', 'str_size'))
v_varCell = nc_sumfile.createVariable('varCell', 'S1', ('nvarsCell', 'str_size'))
v_varEdge = nc_sumfile.createVariable('varEdge', 'S1', ('nvarsEdge', 'str_size'))
v_varVertex = nc_sumfile.createVariable('varVertex', 'S1', ('nvarsVertex', 'str_size'))
v_gm = nc_sumfile.createVariable('global_mean', 'f8', ('nvars', 'ens_size'))
v_standardized_gm = nc_sumfile.createVariable(
'standardized_gm', 'f8', ('nvars', 'ens_size')
)
v_loadings_gm = nc_sumfile.createVariable('loadings_gm', 'f8', ('nvars', 'nvars'))
v_mu_gm = nc_sumfile.createVariable('mu_gm', 'f8', ('nvars',))
v_sigma_gm = nc_sumfile.createVariable('sigma_gm', 'f8', ('nvars',))
v_sigma_scores_gm = nc_sumfile.createVariable('sigma_scores_gm', 'f8', ('nvars',))
# Assign vars, var3d and var2d
# strings need to be the same length...
if verbose:
print('VERBOSE: Assigning vars ...')
eq_all_var_names = []
eq_cell_names = []
eq_edge_names = []
eq_vertex_names = []
l_eq = len(all_var_names)
for i in range(l_eq):
tt = list(all_var_names[i])
l_tt = len(tt)
if l_tt < str_size:
extra = list(' ') * (str_size - l_tt)
tt.extend(extra)
eq_all_var_names.append(tt)
l_eq = len(cell_names)
for i in range(l_eq):
tt = list(cell_names[i])
l_tt = len(tt)
if l_tt < str_size:
extra = list(' ') * (str_size - l_tt)
tt.extend(extra)
eq_cell_names.append(tt)
l_eq = len(edge_names)
for i in range(l_eq):
tt = list(edge_names[i])
l_tt = len(tt)
if l_tt < str_size:
extra = list(' ') * (str_size - l_tt)
tt.extend(extra)
eq_edge_names.append(tt)
l_eq = len(vertex_names)
for i in range(l_eq):
tt = list(vertex_names[i])
l_tt = len(tt)
if l_tt < str_size:
extra = list(' ') * (str_size - l_tt)
tt.extend(extra)
eq_vertex_names.append(tt)
v_vars[:] = eq_all_var_names[:]
v_varCell[:] = eq_cell_names[:]
v_varEdge[:] = eq_edge_names[:]
v_varVertex[:] = eq_vertex_names[:]
# populate variables
v_gm[:, :] = new_gmall[:, :]
v_standardized_gm[:, :] = standardized_global_mean[:, :]
v_mu_gm[:] = mu_gm[:]
v_sigma_gm[:] = sigma_gm[:]
v_loadings_gm[:, :] = loadings_gm[:, :]
v_sigma_scores_gm[:] = scores_gm[:]
print('STATUS: Summary file is complete.')
nc_sumfile.close()
#
# Get the shape of all variable list in tuple for all processor
#
def get_shape(shape_tuple, shape1, rank):
lst = list(shape_tuple)
lst[0] = shape1
shape_tuple = tuple(lst)
return shape_tuple
#
# Get the mpi partition list for each processor
#
def get_stride_list(len_of_list, me):
slice_index = []
for i in range(me.get_size()):
index_arr = np.arange(len_of_list)
slice_index.append(index_arr[i :: me.get_size()])
return slice_index
def gather_list(var_list, me):
whole_list = []
if me.get_rank() == 0:
whole_list.extend(var_list)
for i in range(1, me.get_size()):
if me.get_rank() == 0:
rank_id, var_list = me.collect()
whole_list.extend(var_list)
if me.get_rank() != 0:
me.collect(var_list)
me.sync()
return whole_list
#
# Gather arrays from each processor by the var_list to the master processor and make it an array
#
def gather_npArray(npArray, me, slice_index, array_shape):
the_array = np.zeros(array_shape, dtype=np.float64)
if me.get_rank() == 0:
k = 0
for j in slice_index[me.get_rank()]:
the_array[j, :] = npArray[k, :]
k = k + 1
for i in range(1, me.get_size()):
if me.get_rank() == 0:
rank, npArray = me.collect()
k = 0
for j in slice_index[rank]:
the_array[j, :] = npArray[k, :]
k = k + 1
if me.get_rank() != 0:
# message = {'from_rank': me.get_rank(), 'shape': npArray.shape}
me.collect(npArray)
me.sync()
return the_array
if __name__ == '__main__':
main(sys.argv[1:])