From 01c8be4c38a93bc516a0a4bcce1c937268b630c8 Mon Sep 17 00:00:00 2001 From: Umberto Zerbinati Date: Wed, 12 Jun 2024 14:56:55 +0100 Subject: [PATCH] Working on KSP Signed-off-by: Umberto Zerbinati --- docs/src/PETScKSP/poisson.py.rst | 130 +++++++++++++++++++++++++++++++ 1 file changed, 130 insertions(+) create mode 100644 docs/src/PETScKSP/poisson.py.rst diff --git a/docs/src/PETScKSP/poisson.py.rst b/docs/src/PETScKSP/poisson.py.rst new file mode 100644 index 0000000..baebbbc --- /dev/null +++ b/docs/src/PETScKSP/poisson.py.rst @@ -0,0 +1,130 @@ +Solving the Poisson problem with different preconditioning strategies +======================================================================= + +In this tutorial, we explore using `PETSc KSP` as an out-of-the-box solver inside NGSolve. +We will focus our attention on the Poisson problem, and we will consider different solvers and preconditioning strategies. +Not all the preconditioning strategies are equally effective for all the discretizations of the Poisson problem, and this demo is intended to provide a starting point for the exploration of the preconditioning strategies rather than providing a definitive answer. +We begin by creating a discretisation of the Poisson problem using H1 elements, in particular, we consider the usual variational formulation + +.. math:: + + \text{find } u\in H^1_0(\Omega) \text{ s.t. } a(u,v) := \int_{\Omega} \nabla u\cdot \nabla v \; d\vec{x} = L(v) := \int_{\Omega} fv\; d\vec{x}\qquad v\in H^1_0(\Omega). + +Such a discretisation can easily be constructed using NGSolve as follows: :: + + + from ngsolve import * + import netgen.gui + import netgen.meshing as ngm + from mpi4py.MPI import COMM_WORLD + + if COMM_WORLD.rank == 0: + ngmesh = unit_square.GenerateMesh(maxh=0.1) + for _ in range(4): + ngmesh.Refine() + mesh = Mesh(ngmesh.Distribute(COMM_WORLD)) + else: + mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD)) + order = 2 + fes = H1(mesh, order=order, dirichlet="left|right|top|bottom") + print("Number of degrees of freedom: ", fes.ndof) + u,v = fes.TnT() + a = BilinearForm(grad(u)*grad(v)*dx) + f = LinearForm(fes) + f += 32 * (y*(1-y)+x*(1-x)) * v * dx + a.Assemble() + f.Assemble() + +Now that we have a discretisation of the we use ngsPETSc `KrylovSolver` to solve the linear system. +`KrylovSolver` wraps the PETSc KSP object. +We begin showing how to use an LU factorisation as a direct solver, in particular, we use `MUMPS` to perform the factorisation in parallel. +Let us discuss the solver options, i.e. the `ksp_type` set to `preonly` enforces the use of a direct solver, `pc_type` enforces that we use a direct LU factorisation, while `pc_factor_mat_solver_type` enforces the use of `MUMPS`. :: + + from ngsPETSc import KrylovSolver + solver = KrylovSolver(a, fes.FreeDofs(), + solverParameters={"ksp_type": "preonly", + "pc_type": "lu", + "pc_factor_mat_solver_type": "mumps"}) + gfu = GridFunction(fes) + solver.solve(f.vec, gfu.vec) + exact = 16*x*(1-x)*y*(1-y) + print ("L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh))) + Draw(gfu) + +We can also use an interative solver with an incomplete LU factorisation as a preconditioner. +We have now switched to an interative solver setting the `ksp_type` flag to `cg`, while we enforce the use of an incomplete LU using the flag `pc_type`. +We have also used the flag `ksp_monitor` to view the residual at each linear iteration. :: + + solver = KrylovSolver(a, fes.FreeDofs(), + solverParameters={"ksp_type": "cg", + "ksp_monitor": "", + "pc_type": "ilu", + "pc_factor_mat_solver_type": "petsc"}) + gfu = GridFunction(fes) + solver.solve(f.vec, gfu.vec) + print ("L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh))) + Draw(gfu) + +.. list-table:: Preconditioners performance + :widths: auto + :header-rows: 1 + + * - Preconditioner + - Iterations + * - PETSc ILU + - 166 + +We can also use an Algebraic MultiGrid preconditioner, in particular we PETSc own implementation of AMG. :: + + solver = KrylovSolver(a, fes.FreeDofs(), + solverParameters={"ksp_type": "cg", + "ksp_monitor": "", + "pc_type": "gamg"}) + gfu = GridFunction(fes) + solver.solve(f.vec, gfu.vec) + print ("L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh))) + Draw(gfu) + +.. list-table:: Preconditioners performance + :widths: auto + :header-rows: 1 + + * - Preconditioner + - Iterations + * - PETSc ILU + - 166 + * - PETSc GAMG + - 35 + +We can also use PETSc `BDDC` preconditioner, once again we will enforce this option via the `pc_type` flag. +We will also use the `ksp_rtol` flag to obtain a more accurate solution of the linear system. :: + + solver = KrylovSolver(a, fes.FreeDofs(), + solverParameters={"ksp_type": "cg", + "ksp_monitor": "", + "pc_type": "bddc", + "ngs_mat_type": "is", + "ksp_rtol": 1e-10}) + gfu = GridFunction(fes) + solver.solve(f.vec, gfu.vec) + print ("L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh))) + Draw(gfu) + +.. list-table:: Preconditioners performance + :widths: auto + :header-rows: 1 + + * - Preconditioner + - Iterations + * - PETSc ILU + - 166 + * - PETSc GAMG + - 35 + * - PETSc BDDC (N=2) + - 10 + * - PETSc BDDC (N=4) + - 12 + * - PETSc BDDC (N=6) + - 14 + +We see that for an increasing number of subdomains :math:`N` the number of iterations increases. \ No newline at end of file