From 326867ebdea3b540227b7dd8347894ea2262ed3f Mon Sep 17 00:00:00 2001 From: Patrick Farrell Date: Wed, 26 Jun 2024 09:55:33 +0100 Subject: [PATCH] Remove generated code --- docs/src/PETScPC/poisson.py | 158 ---------------- docs/src/PETScPC/stokes.py | 347 ------------------------------------ 2 files changed, 505 deletions(-) delete mode 100644 docs/src/PETScPC/poisson.py delete mode 100644 docs/src/PETScPC/stokes.py diff --git a/docs/src/PETScPC/poisson.py b/docs/src/PETScPC/poisson.py deleted file mode 100644 index 2df07d8..0000000 --- a/docs/src/PETScPC/poisson.py +++ /dev/null @@ -1,158 +0,0 @@ -# Vertex Patch smoothing for p-Multigrid preconditioners for the Poisson problem -# =============================================================================== -# -# In this tutorial, we explore using `PETSc PC` as a preconditioner inside NGSolve preconditioning infrastructure. -# We will focus our attention on the Poisson problem, and we will consider different preconditioning strategies. -# Not all the preconditioning strategies are equally effective for all the discretizations of the Poisson problem, and this demo is intended to provide a starting point for the exploration of the preconditioning strategies rather than providing a definitive answer. -# We begin by creating a discretisation of the Poisson problem using H1 elements, in particular, we consider the usual variational formulation -# -# .. math:: -# -# \text{find } u\in H^1_0(\Omega) \text{ s.t. } a(u,v) := \int_{\Omega} \nabla u\cdot \nabla v \; d\vec{x} = L(v) := \int_{\Omega} fv\; d\vec{x}\qquad v\in H^1_0(\Omega). -# -# Such a discretisation can easily be constructed using NGSolve as follows: :: - -from ngsolve import * -import netgen.gui -import netgen.meshing as ngm -from mpi4py.MPI import COMM_WORLD - -if COMM_WORLD.rank == 0: - ngmesh = unit_square.GenerateMesh(maxh=0.1) - for _ in range(4): - ngmesh.Refine() - mesh = Mesh(ngmesh.Distribute(COMM_WORLD)) -else: - mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD)) -order = 2 -fes = H1(mesh, order=order, dirichlet="left|right|top|bottom") -print("Number of degrees of freedom: ", fes.ndof) -u,v = fes.TnT() -a = BilinearForm(grad(u)*grad(v)*dx) -f = LinearForm(fes) -f += 32 * (y*(1-y)+x*(1-x)) * v * dx -a.Assemble() -f.Assemble() - -# We now construct an NGSolve preconditioner wrapping a `PETSc PC`, we begin considering an Algebraic MultiGrid preconditioner constructed using `HYPRE`. -# In this tutorial, we will use the Krylov solver implemented inside NGSolve to solve the linear system. :: - -from ngsPETSc.pc import * -from ngsolve.krylovspace import CG -pre = Preconditioner(a, "PETScPC", pc_type="hypre") -gfu = GridFunction(fes) -print("-------------------|HYPRE p={}|-------------------".format(order)) -gfu.vec.data = CG(a.mat, rhs=f.vec, pre=pre.mat, printrates=True) -Draw(gfu) - -# We see that the HYPRE preconditioner is quite effective for the Poisson problem discretised using linear elements, but it is not as effective for higher-order elements. -# -# .. list-table:: Preconditioners performance HYPRE -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - p=1 -# - p=2 -# - p=3 -# - p=4 -# * - HYPRE -# - 10 (1.57e-12) -# - 70 (2.22e-13) -# - 42 (3.96e-13) -# - 70 (1.96e-13) -# -# To overcome this issue we will use a two-level additive Schwarz preconditioner. -# In this case, we will use as fine space correction, the inverse of the local matrices associated with the patch of a vertex. :: - -def VertexPatchBlocks(mesh, fes): - blocks = [] - freedofs = fes.FreeDofs() - for v in mesh.vertices: - vdofs = set() - for el in mesh[v].elements: - vdofs |= set(d for d in fes.GetDofNrs(el) - if freedofs[d]) - blocks.append(vdofs) - return blocks - -blocks = VertexPatchBlocks(mesh, fes) -dofs = BitArray(fes.ndof); dofs[:] = True -blockjac = ASMPreconditioner(a.mat, dofs, blocks=blocks, - solverParameters={"pc_type": "asm", - "sub_ksp_type": "preonly", - "sub_pc_type": "lu"}) - -# We now isolate the degrees of freedom associated with the vertices and construct a two-level additive Schwarz preconditioner, where the coarse space correction is the inverse of the local matrices associated with the vertices. :: - -def VertexDofs(mesh, fes): - vertexdofs = BitArray(fes.ndof) - vertexdofs[:] = False - for v in mesh.vertices: - for d in fes.GetDofNrs(v): - vertexdofs[d] = True - vertexdofs &= fes.FreeDofs() - return vertexdofs - -vertexdofs = VertexDofs(mesh, fes) -preCoarse = PETScPreconditioner(a.mat, vertexdofs, solverParameters={"pc_type": "hypre"}) -pretwo = preCoarse + blockjac -print("-------------------|Additive Schwarz p={}|-------------------".format(order)) -gfu.vec.data = CG(a.mat, rhs=f.vec, pre=pretwo, printrates=True) - -# We can see that the two-level additive Schwarz preconditioner where the coarse space correction is performed using HYPRE is more effective than using just HYPRE preconditioner for higher-order elements. -# -# .. list-table:: Preconditioners performance HYPRE and Two Level Additive Schwarz -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - p=1 -# - p=2 -# - p=3 -# - p=4 -# * - HYPRE -# - 10 (1.57e-12) -# - 70 (2.22e-13) -# - 42 (3.96e-13) -# - 70 (1.96e-13) -# * - Additive Schwarz -# - 44 (1.96e-12) -# - 45 (1.28e-12) -# - 45 (1.29e-12) -# - 45 (1.45e-12) -# -# -# We can also use the PETSc preconditioner as an auxiliary space preconditioner. -# Let us consider the discontinuous Galerkin discretisation of the Poisson problem. :: - -fesDG = L2(mesh, order=order, dgjumps=True) -u,v = fesDG.TnT() -aDG = BilinearForm(fesDG) -jump_u = u-u.Other(); jump_v = v-v.Other() -n = specialcf.normal(2) -mean_dudn = 0.5*n * (grad(u)+grad(u.Other())) -mean_dvdn = 0.5*n * (grad(v)+grad(v.Other())) -alpha = 4 -h = specialcf.mesh_size -aDG = BilinearForm(fesDG) -aDG += grad(u)*grad(v) * dx -aDG += alpha*3**2/h*jump_u*jump_v * dx(skeleton=True) -aDG += alpha*3**2/h*u*v * ds(skeleton=True) -aDG += (-mean_dudn*jump_v -mean_dvdn*jump_u)*dx(skeleton=True) -aDG += (-n*grad(u)*v-n*grad(v)*u)*ds(skeleton=True) -fDG = LinearForm(fesDG) -fDG += 1*v * dx -aDG.Assemble() -fDG.Assemble() - -# We can now use the PETSc PC assembled for the conforming Poisson problem as an auxiliary space preconditioner for the DG discretisation. :: - -from ngsPETSc import pc -smoother = Preconditioner(aDG, "PETScPC", pc_type="jacobi") -transform = fes.ConvertL2Operator(fesDG) -preDG = transform @ pre.mat @ transform.T + smoother.mat -gfuDG = GridFunction(fesDG) -print("-------------------|Auxiliary Space preconditioner p={}|-------------------".format(order)) -gfuDG.vec.data = CG(aDG.mat, rhs=fDG.vec, pre=preDG, printrates=True) -Draw(gfuDG) \ No newline at end of file diff --git a/docs/src/PETScPC/stokes.py b/docs/src/PETScPC/stokes.py deleted file mode 100644 index 56964a9..0000000 --- a/docs/src/PETScPC/stokes.py +++ /dev/null @@ -1,347 +0,0 @@ -# Preconditioning the Stokes problem -# =================================== -# -# In this tutorial, we explore constructing preconditioners for saddle point problems using `PETSc PC`. -# In particular, we will consider a Bernardi-Raugel inf-sup stable discretization of the Stokes problem, i.e. -# -# .. math:: -# -# \text{find } (\vec{u},p) \in [H^1_{0}(\Omega)]^d\times L^2(\Omega) \text{ s.t. } -# -# \begin{cases} -# (\nabla \vec{u},\nabla \vec{v})_{L^2(\Omega)} + (\nabla\cdot \vec{v}, p)_{L^2(\Omega)} = (\vec{f},\vec{v})_{L^2(\Omega)} \qquad \forany v\in H^1_{0}(\Omega)\\ -# (\nabla\cdot \vec{u},q)_{L^2(\Omega)} = 0 \qquad q\in L^2(\Omega) -# \end{cases} -# -# Such a discretization can easily be constructed using NGSolve as follows: :: - -from ngsolve import * -from ngsolve import BilinearForm as BF -from netgen.occ import * -import netgen.gui -import netgen.meshing as ngm -from mpi4py.MPI import COMM_WORLD - -if COMM_WORLD.rank == 0: - shape = Rectangle(2,0.41).Circle(0.2,0.2,0.05).Reverse().Face() - shape.edges.name="wall" - shape.edges.Min(X).name="inlet" - shape.edges.Max(X).name="outlet" - geo = OCCGeometry(shape, dim=2) - ngmesh = geo.GenerateMesh(maxh=0.1) - mesh = Mesh(ngmesh.Distribute(COMM_WORLD)) -else: - mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD)) -nu = Parameter(1.0) -V = VectorH1(mesh, order=4, dirichlet="wall|inlet|cyl", autoupdate=True) -Q = L2(mesh, order=3, autoupdate=True) -u,v = V.TnT(); p,q = Q.TnT() -a = BilinearForm(nu*InnerProduct(Grad(u),Grad(v))*dx) -a.Assemble() -b = BilinearForm(div(u)*q*dx) -b.Assemble() -gfu = GridFunction(V, name="u") -gfp = GridFunction(Q, name="p") -uin = CoefficientFunction( (1.5*4*y*(0.41-y)/(0.41*0.41), 0) ) -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -f = LinearForm(V).Assemble() -g = LinearForm(Q).Assemble(); - -# We can now explore what happens if we use a Schour complement preconditioner for the saddle point problem. -# We can construct the Schur complement preconditioner using the following code: :: - -K = BlockMatrix( [ [a.mat, b.mat.T], [b.mat, None] ] ) -from ngsPETSc.pc import * -apre = Preconditioner(a, "PETScPC", pc_type="lu") -S = (b.mat @ apre.mat @ b.mat.T).ToDense().NumPy() -from numpy.linalg import pinv -from scipy.sparse import coo_matrix -from ngsolve.la import SparseMatrixd -Sinv = coo_matrix(pinv(S)) -Sinv = la.SparseMatrixd.CreateFromCOO(indi=Sinv.row, - indj=Sinv.col, - values=Sinv.data, - h=S.shape[0], - w=S.shape[1]) -C = BlockMatrix( [ [a.mat.Inverse(V.FreeDofs()), None], - [None, Sinv] ] ) - -rhs = BlockVector ( [f.vec, g.vec] ) -sol = BlockVector( [gfu.vec, gfp.vec] ) -print("-----------|Schur|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-8, - printrates=True, initialize=False) -Draw(gfu) - -# The Schur complement preconditioner converges in a few iterations, but it is not very efficient since we need to invert the Schur complement. -# -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# -# Notice that the Schur complement is dense hence inverting it is not a good idea. Not only that but to perform the inversion of the Schur complement had to write a lot of "boilerplate" code. -# Since our discretization is inf-sup stable it is possible to prove that the mass matrix of the pressure space is spectrally equivalent to the Schur complement. -# This means that we can use the mass matrix of the pressure space as a preconditioner for the Schur complement. -# Notice that we still need to invert the mass matrix and we will do so using a `PETSc PC` of type Jacobi, which is the exact inverse since we are using `P0` elements. -# We will also invert the Laplacian block using a `PETSc PC` of type `LU`. :: - -m = BilinearForm((1/nu)*p*q*dx).Assemble() -mpre = Preconditioner(m, "PETScPC", pc_type="lu") -apre = a.mat.Inverse(V.FreeDofs()) -C = BlockMatrix( [ [apre, None], [None, mpre] ] ) - -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -sol = BlockVector( [gfu.vec, gfp.vec] ) - -print("-----------|Mass & LU|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-8, - maxsteps=100, printrates=True, initialize=False) -Draw(gfu) - -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# * - Mass & LU -# - 66 (2.45e-08) -# -# We can also construct a multi-grid preconditioner for the top left block of the saddle point problem, as we have seen in :doc:`poisson.py`. :: - -def DoFInfo(mesh, fes): - blocks = [] - freedofs = fes.FreeDofs() - vertexdofs = BitArray(fes.ndof) - vertexdofs[:] = False - for v in mesh.vertices: - vdofs = set() - vdofs |= set(d for d in fes.GetDofNrs(v) if freedofs[d]) - for ed in mesh[v].edges: - vdofs |= set(d for d in fes.GetDofNrs(ed) if freedofs[d]) - for fc in mesh[v].faces: - vdofs |= set(d for d in fes.GetDofNrs(fc) if freedofs[d]) - blocks.append(vdofs) - for d in fes.GetDofNrs(v): - vertexdofs[d] = True - vertexdofs &= fes.FreeDofs() - return vertexdofs, blocks - -vertexdofs, blocks = DoFInfo(mesh, V) -blockjac = a.mat.CreateBlockSmoother(blocks) -preH = PETScPreconditioner(a.mat, vertexdofs, solverParameters={"pc_type":"hypre"}) -twolvpre = preH + blockjac -C = BlockMatrix( [ [twolvpre, None], [None, mpre] ] ) -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -print("-----------|Mass & Two Level Additive Schwarz|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-8, - maxsteps=100, printrates=True, initialize=False) - -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# * - Mass & LU -# - 66 (2.45e-08) -# * - Mass & Two Level Additive Schwarz -# - 100 (4.68e-06) -# -# The mass matrix as a preconditioner doesn't seem to be ideal, in fact, our Krylov solver took many iterations to converge with a direct LU factorization of the velocity block and did not converge at all with `HYPRE`. -# To resolve this issue we resort to an augmented Lagrangian formulation, i.e. -# -# .. math:: -# \begin{cases} -# (\nabla \vec{u},\nabla \vec{v})_{L^2(\Omega)} + (\nabla\cdot \vec{v}, p)_{L^2(\Omega)} + \gamma (\nabla\cdot \vec{u},\nabla\cdot\vec{v})_{L^2(\Omega)} = (\vec{f},\vec{v})_{L^2(\Omega)} \qquad \forany v\in H^1_{0}(\Omega)\\ -# (\nabla\cdot \vec{u},q)_{L^2(\Omega)} = 0 \qquad q\in L^2(\Omega) -# \end{cases} -# -# This formulation can easily be constructed by adding a new velocity block in the `BlockMatrix`, as follows: :: - -gamma = Parameter(1e8) -aG = BilinearForm(nu*InnerProduct(Grad(u),Grad(v))*dx+gamma*div(u)*div(v)*dx) -aG.Assemble() -aGpre = Preconditioner(aG, "PETScPC", pc_type="lu") -mG = BilinearForm((1/nu+gamma)*p*q*dx).Assemble() -mGpre = Preconditioner(mG, "PETScPC", pc_type="jacobi") - -K = BlockMatrix( [ [aG.mat, b.mat.T], [b.mat, None] ] ) -C = BlockMatrix( [ [aGpre.mat, None], [None, mGpre.mat] ] ) - -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -sol = BlockVector( [gfu.vec, gfp.vec] ) - -print("-----------|Augmented LU|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-10, - printrates=True, initialize=False) -Draw(gfu) - -# Using an augmented Lagrangian formulation, we were able to converge in only two iterations. -# This is because the augmented Lagrangian formulation improves the spectral equivalence of the mass matrix of the pressure space and the Schur complement. -# -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# * - Mass & LU -# - 66 (2.45e-08) -# * - Mass & Two Level Additive Schwarz -# - 100 (4.68e-06) -# * - Augmented Lagrangian LU -# - 2 (9.24e-8) -# -# Notice that so far we have been inverting the matrix corresponding to the Laplacian block using a direct LU factorization. -# This is not ideal for large problems, and we can use a `Hypre` preconditioner for the Laplacian block. :: - -smoother = aG.mat.CreateBlockSmoother(blocks) -preHG = PETScPreconditioner(aG.mat, vertexdofs, solverParameters={"pc_type":"hypre"}) -twolvpre = preHG + smoother -C = BlockMatrix( [ [twolvpre, None], [None, mGpre] ] ) -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -print("-----------|Augmented Two Level Additive Schwarz|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-10, - printrates=True, initialize=False) -Draw(gfu) - -# Our first attempt at using a `HYPRE` preconditioner for the Laplacian block did not converge. -# -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditi¬oner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# * - Mass & LU -# - 66 (2.45e-08) -# * - Mass & Two Level Additive Schwarz -# - 100 (4.68e-06) -# * - Augmented Lagrangian LU -# - 2 (9.24e-08) -# * - Augmented Two Level Additive Schwarz -# - 100 (1.06e-03) -# -# This is because the top left block of the saddle point problem now contains the augmentation term, which has a very large kernel. -# It is well known that algebraic multi-grid methods do not work well with indefinite problems, and this is what we are observing here. -# We begin by constructing the augmented Lagrangian formulation in more numerical linear algebra terms, i.e. -# -# .. math:: -# \begin{bmatrix} -# A + B^T (\gamma M^{-1}) B & B^T \\ -# B & 0 -# \end{bmatrix} -# \begin{bmatrix} -# u \\ -# p -# \end{bmatrix} -# = -# \begin{bmatrix} -# f \\ -# 0 -# \end{bmatrix} -# -# We can construct this linear algebra problem inside NGSolve as follows :: - -d = BilinearForm((1/gamma)*p*q*dx) -d.Assemble() -dpre = PETScPreconditioner(d.mat, Q.FreeDofs(), solverParameters={"pc_type":"lu"}) -aG = a.mat + b.mat.T@dpre@b.mat -aG = coo_matrix(aG.ToDense().NumPy()) -aG = la.SparseMatrixd.CreateFromCOO(indi=aG.row, - indj=aG.col, - values=aG.data, - h=aG.shape[0], - w=aG.shape[1]) -K = BlockMatrix( [ [aG, b.mat.T], [b.mat, None] ] ) -pre = PETScPreconditioner(aG, V.FreeDofs(), solverParameters={"pc_type":"lu"}) -C = BlockMatrix( [ [pre, None], [None, mGpre.mat] ] ) - -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -sol = BlockVector( [gfu.vec, gfp.vec] ) - -print("-----------|Boffi--Lovadina Augmentation LU|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-10, - printrates=True, initialize=False) -Draw(gfu) - -# We can now think of a more efficient way to invert the matrix corresponding to the augmentation term. -# In fact, since we know that the augmentation block has a lower rank than the Laplacian block, we can use the Sherman-Morrisson-Woodbory formula to invert the augmentation block. -# -# .. math:: -# (A + B^T(\gamma M^{-1})B)^{-1} = A^{-1} - A^{-1}B^T(\frac{1}{\gamma}M^{-1} + BA^{-1}B^T)^{-1}BA^{-1} -# -# We will do this in two different ways first we will invert the :math:`(\frac{1}{\gamma}M^{-1} + BA^{-1}B^T)` block using a direct LU factorization. -# Then we will notice that since the penalisation parameter is large we can ignore the :math:`\frac{1}{\gamma}M^{-1}` term and use the mass matrix since it is spectrally to the Schur complement. :: - -SM = (d.mat + b.mat@apre@b.mat.T).ToDense().NumPy() -SM = coo_matrix(SM) -SM = la.SparseMatrixd.CreateFromCOO(indi=SM.row, - indj=SM.col, - values=SM.data, - h=SM.shape[0], - w=SM.shape[1]) - -SMinv = PETScPreconditioner(SM, Q.FreeDofs(), solverParameters={"pc_type":"lu"}) - -C = BlockMatrix( [ [apre - apre@b.mat.T@SMinv@b.mat@apre, None], [None, mGpre.mat] ] ) - -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -sol = BlockVector( [gfu.vec, gfp.vec] ) - -print("-----------|Boffi--Lovadina Augmentation Sherman-Morrisson-Woodbory|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-10, - printrates=True, initialize=False) -Draw(gfu) - -C = BlockMatrix( [ [apre + apre@(b.mat.T@mpre.mat@b.mat)@apre, None], [None, mGpre.mat] ] ) - -gfu.vec.data[:] = 0; gfp.vec.data[:] = 0; -gfu.Set(uin, definedon=mesh.Boundaries("inlet")) -sol = BlockVector( [gfu.vec, gfp.vec] ) - -print("-----------|Boffi--Lovadina Augmentation Sherman-Morrisson-Woodbory|-----------") -solvers.MinRes (mat=K, pre=C, rhs=rhs, sol=sol, tol=1e-13, - printrates=True, initialize=False) -Draw(gfu) - -# We see that a purely algebraic approach based on the Sherman-Morrisson-Woodbory formula is more efficient for the augmented Lagrangian formulation, then a naive two-level additive Schwarz approach. -# -# .. list-table:: Preconditioners performance -# :widths: auto -# :header-rows: 1 -# -# * - Preconditioner -# - Iterations -# * - Schur complement -# - 4 (9.15e-14) -# * - Mass & LU -# - 66 (2.45e-08) -# * - Mass & Two Level Additive Schwarz -# - 100 (4.68e-06) -# * - Augmented Lagrangian LU -# - 2 (9.24e-08) -# * - Augmented Two Level Additive Schwarz -# - 100 (1.06e-03) -# * - Augmentation Schermon-Morrisson-Woodbory -# - 84 (1.16e-07)