From 35db34fa9d5a6bd6d4bbd207f3a5247c230c6541 Mon Sep 17 00:00:00 2001 From: Umberto Zerbinati Date: Sun, 2 Jun 2024 23:47:36 +0100 Subject: [PATCH] First tutorial on SLEPc EPS Signed-off-by: Umberto Zerbinati --- docs/src/SLEPcEPS/poisson.py.rst | 94 ++++++++++++++++++++++++++++++++ docs/src/index.rst | 5 ++ 2 files changed, 99 insertions(+) create mode 100644 docs/src/SLEPcEPS/poisson.py.rst diff --git a/docs/src/SLEPcEPS/poisson.py.rst b/docs/src/SLEPcEPS/poisson.py.rst new file mode 100644 index 0000000..abfec4a --- /dev/null +++ b/docs/src/SLEPcEPS/poisson.py.rst @@ -0,0 +1,94 @@ +Solving the Laplace eigenvalue problem using SLEPc EPS +======================================================= + +In this tutorial, we explore using `SLEPc EPS` to solve the Laplace eigenvalue problem in different formulations. +We begin considering the Poisson eigenvalue problem in primal form, i.e. + +.. math:: + + \text{find } (u,\lambda) \in H^1_0(\Omega)\times\mathbb{R} \text{ s.t. } a(u,v) := \int_{\Omega} \nabla u\cdot \nabla v \; d\vec{x} = \lambda (u,v)_{L^2(\Omega)},\quad v\in H^1_0(\Omega). + +Such a discretisation can easily be constructed using NGSolve as follows: :: + + from ngsolve import * + import netgen.gui + import netgen.meshing as ngm + import numpy as np + from mpi4py.MPI import COMM_WORLD + + if COMM_WORLD.rank == 0: + mesh = Mesh(unit_square.GenerateMesh(maxh=0.1).Distribute(COMM_WORLD)) + else: + mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD)) + + order = 3 + fes = H1(mesh, order=order, dirichlet="left|right|top|bottom") + print("Number of degrees of freedom: ", fes.ndof) + u,v = fes.TnT() + a = BilinearForm(grad(u)*grad(v)*dx, symmetric=True) + a.Assemble() + m = BilinearForm(-1*u*v*dx, symmetric=True) + m.Assemble() + +We then proceed to solve the eigenvalue problem using `SLEPc EPS` using ngsPETSc's `EigenSolver` class. +In particular, we will use SLEPc implementation of a locally optimal block preconditioned conjugate gradient. +Notice that we have assembled the mass matrix so that it is symmetric negative definite, this is because ngsPETSc `Eigensolver` requires you to write all eigenvalue problems as a polynomial eigenvalue problem, i.e. + +.. math:: + A\vec{U} - \lambda M\vec{U} = 0 + +where :math:`A` and :math:`M` are the stiffness and mass matrices, respectively. :: + + from ngsPETSc import EigenSolver + solver = EigenSolver((m, a), fes, 10, solverParameters={"eps_type":"lobpcg", "st_type":"precond"}) + solver.solve() + for i in range(10): + print("Normalised (by pi^2) Eigenvalue ", i, " = ", solver.eigenValue(i)/(np.pi*np.pi)) + modes, _ = solver.eigenFunctions(list(range(10))) + Draw(modes) + +Notice that we can access a single eigenvalue using `solver.eigenValue(i)` and the corresponding eigenfunction using `solver.eigenFunction(i)`. +If we use `solver.eigenFunctions(indices)` we can access the first 10 eigenfunctions as a multi-dimensional array and we can obtain the corresponding eigenvalues using `solver.eigenValues(indices)`. +We now consider a mixed formulation of the Laplace eigenvalue problem, i.e. + +.. math:: + + \text{find } (\vec{\sigma}, u, \lambda) \in H(\text{div},\Omega)\times L^2(\Omega)\times \mathbb{R} \text{ s.t. } \\ + \begin{cases} + \int_{\Omega} \vec{\sigma}\cdot\vec{\tau} \; d\vec{x} - \int_{\Omega} u \nabla \cdot \vec{\tau} \; d\vec{x} = 0 & \forall \vec{\tau}\in H(\text{div},\Omega)\\ + \int_{\Omega} \nabla\cdot\vec{\sigma}v \; d\vec{x} = \lambda \int_{\Omega} uv \; d\vec{x} & \forall v\in L^2(\Omega) + \end{cases} + +We can discretise this problem using NGSolve as follows: :: + + V = HDiv(mesh, order=order) + Q = L2(mesh, order=order-1) + W = FESpace([V,Q]) + print("Number of degrees of freedom: ", W.ndof) + sigma, u = W.TrialFunction() + tau, v = W.TestFunction() + a = BilinearForm(sigma*tau*dx + div(tau)*u*dx + div(sigma)*v*dx) + a.Assemble() + + m = BilinearForm(1*u*v*dx) + m.Assemble() + +We can then solve the eigenvalue problem using `SLEPc EPS` using ngsPETSc's `EigenSolver` class. +Since the mass matrix now has a large kernel, hence is no longer symmetric positive definite, we can not use LOBPCG as a solver. +Instead, we will use a Krylov-Schur solver with a shift-and-invert spectral transformation to target the smallest eigenvalues. +Notice that because we are using a shift-and-invert spectral transformation we only need to invert the stiffness matrix which has a trivial kernel because we are using an inf-sup discretisation. +If we tried to use an simple shift transformation to target the largest eigenvalues we would have run into the error caused by trying to invert a singular matrix.:: + + solver = EigenSolver((m, a), W, 10, + solverParameters={"eps_type":"krylovschur", + "st_type":"sinvert", + "eps_target": 0, + "st_pc_type": "lu", + "st_pc_factor_mat_solver_type": "mumps"}) + solver.solve() + for i in range(10): + print("Normalised (by pi^2) Eigenvalue ", i, " = ", solver.eigenValue(i)/(np.pi*np.pi)) + mode, _ = solver.eigenFunction(0) + modeSigma, modeU = mode.components + Draw(modeSigma, mesh, "sigma") + Draw(modeU, mesh, "u") diff --git a/docs/src/index.rst b/docs/src/index.rst index 894c3f7..229377c 100644 --- a/docs/src/index.rst +++ b/docs/src/index.rst @@ -18,6 +18,11 @@ Welcome to ngsPETSc's documentation! PETScPC/poisson.py +.. toctree:: + :maxdepth: 1 + :caption: SLEPc EPS + + SLEPcEPS/poisson.py