-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmeth_proportion_kde.py
159 lines (141 loc) · 4.83 KB
/
meth_proportion_kde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pandas as pd
import numpy as np
import seaborn as sns
import time
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
import os
from scipy.stats import pearsonr, describe
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.colors as colors
from matplotlib.patches import Rectangle
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.gridspec import GridSpec
from matplotlib.ticker import MultipleLocator
plt.rcParams['pdf.fonttype'] = 42
plt.switch_backend('agg')
sns.set(rc={'figure.figsize':(11.7,80.27)})
#Plot the KDE of methylation proportions for each of the technologies
def main(r9, r10, pacbio, illumina, min_reads, out_dir, out_prefix):
chrom_index = {
'chr1': 0,
'chr2': 1,
'chr3': 2,
'chr4': 3,
'chr5': 4,
'chr6': 5,
'chr7': 6,
'chr8': 7,
'chr9': 8,
'chr10': 9,
'chr11': 10,
'chr12': 11,
'chr13': 12,
'chr14': 13,
'chr15': 14,
'chr16': 15,
'chr17': 16,
'chr18': 17,
'chr19': 18,
'chr20': 19,
'chr21': 20,
'chr22': 21,
'chrX': 22,
'chrY': 23,
'chrM': 24
}
r9_df = pd.read_csv(r9, sep='\t', header=None, usecols=[0,11,12])
r9_df.columns = ['chrom', 'mod', 'canon']
r9_df['proportion'] = r9_df['mod'] / (r9_df['mod'] + r9_df['canon'])
r9_df = r9_df[(r9_df['mod'] + r9_df['canon'] >= 20) &
(r9_df['mod'] + r9_df['canon'] <= 200) &
(r9_df['chrom'].isin(chrom_index))]
r10_df = pd.read_csv(r10, sep='\t', header=None, usecols=[0,11,12])
r10_df.columns = ['chrom', 'mod', 'canon']
r10_df['proportion'] = r10_df['mod'] / (r10_df['mod'] + r10_df['canon'])
r10_df = r10_df[(r10_df['mod'] + r10_df['canon'] >= 20) &
(r10_df['mod'] + r10_df['canon'] <= 200)&
(r10_df['chrom'].isin(chrom_index))]
pacbio_df = pd.read_csv(pacbio, sep='\t', header = None, usecols = [0,11,12])
pacbio_df.columns = ['chrom', 'mod', 'canon']
pacbio_df['proportion'] = pacbio_df['mod'] / (pacbio_df['mod'] + pacbio_df['canon'])
pacbio_df = pacbio_df[(pacbio_df['mod'] + pacbio_df['canon'] >= 20) &
(pacbio_df['mod'] + pacbio_df['canon'] <= 200)&
(pacbio_df['chrom'].isin(chrom_index))]
illumina_df = pd.read_csv(illumina, sep='\t', header = None, usecols = [0,4,5])
illumina_df.columns = ['chrom', 'mod', 'canon']
illumina_df['proportion'] = illumina_df['mod'] / (illumina_df['mod'] + illumina_df['canon'])
illumina_df = illumina_df[(illumina_df['mod'] + illumina_df['canon'] >= 20) &
(illumina_df['mod'] + illumina_df['canon'] <= 200)&
(illumina_df['chrom'].isin(chrom_index))]
fig, ax = plt.subplots(1, 1)
fig.set_figwidth(80)
fig.set_figheight(15)
sns.kdeplot(data = r9_df, x = 'proportion', color = 'g', ax = ax, label = 'R9', clip = [0,1], bw_adjust = 2)
sns.kdeplot(data = r10_df, x = 'proportion', color = 'b', ax = ax, label = 'R10', clip = [0,1], bw_adjust = 2)
sns.kdeplot(data = pacbio_df, x = 'proportion', color = 'm', ax = ax, label = 'Pacbio', clip = [0,1], bw_adjust = 2)
sns.kdeplot(data = illumina_df, x = 'proportion', color = 'k', ax = ax, label = 'Illumina', clip = [0,1], bw_adjust = 2)
ax.grid(False)
fig.legend()
fig.get_figure().savefig('meth_proportion_kdeplots.pdf')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--r9_modkit",
"-9",
type=str,
required = True,
help = "R9 modkit"
)
parser.add_argument(
"--r10_modkit",
"-10",
type=str,
required = True,
help = "R10 modkit"
)
parser.add_argument(
"--pacbio_modkit",
"-pb",
type=str,
required = True,
help = "pacbio modkit"
)
parser.add_argument(
"--illumina_5mC",
"-i",
type=str,
required = True,
help = "Illumina in Bismark format"
)
parser.add_argument(
"--min_reads",
"-m",
type = int,
default = 10,
help = "The minimum number of reads from both R9 and R10 to consider a loci"
)
parser.add_argument(
"--output_directory",
"-od",
type = str,
required = True,
help = "Directory where plots will be saved"
)
parser.add_argument(
"--output_prefix",
"-op",
type = str,
help = "Prefix for output figures",
default = "out"
)
FLAGS, unparsed = parser.parse_known_args()
main(FLAGS.r9_modkit,
FLAGS.r10_modkit,
FLAGS.pacbio_modkit,
FLAGS.illumina_5mC,
FLAGS.min_reads,
FLAGS.output_directory,
FLAGS.output_prefix)